The Correspondence Principle

a) The correspondence principle states that in situations where the quantum-mechanical effects have little effect, classical and quantum calculations should yield the same results. Such an example is for large quantum numbers, \(n \), where the energy levels approach becoming continuous (not discrete), so \(E_n = E_0/n^2 \).

b) Consider the case of large \(n \) and look at the frequency of the photon emitted when an electron makes a transition from the state \(n \rightarrow n-1 \).

From Bohr's theory, \(E_n = -\frac{Z^2E_0}{n^2} \) where \(E_0 = \frac{mk^2e^4}{2\hbar^2} \)

where \(n = 1, 2, 3, \ldots \)

\[
E_{ph} = |E_{n+1} - E_n| = Z^2E_0 \left[\frac{1}{(n-1)^2} - \frac{1}{n^2} \right]
\]

\[
= Z^2E_0 \left[\frac{n^2 - (n-1)^2}{n^2(n-1)^2} \right] = Z^2E_0 \left[\frac{n^2 - (n^2 - 2n + 1)}{n^2(n-1)^2} \right]
\]

\[
= Z^2E_0 \left(\frac{2n-1}{n^2(n-1)^2} \right)
\]

and \(E_{ph} = \hbar f_{ph} \)

\[
f_{ph} = \frac{Z^2E_0(2n-1)}{n^2(n-1)^2\hbar} = \frac{Z^2(2n-1)mk^2e^4}{n^2(n-1)^2\hbar^2} = \frac{Z^2mk^2e^4(2n-1)}{4\pi\hbar^3 n^2(n-1)^2}
\]

c) In the case of large \(n \), \((n-1) \approx n \), \((2n-1) \approx 2n \)

\[
f_{ph} \approx \frac{Z^2mk^2e^42n}{4\pi\hbar^3 n^4} = \frac{Z^2mk^2e^4}{2\pi\hbar^3 n^3}, \text{ as required}
\]
Consider an electron orbiting the nucleus according to Bohr’s theory:

For the \(n^{th} \) energy level,

\[
L = n\hbar = r_n m v_n \quad \text{(ang. m\text{v}m)}
\]

also \(r_n = n^2 a_0 \) where \(a_0 = \frac{\hbar^2}{2mke^2} \)

now to determine the frequency of oscillation of the electron
(also predicted to be the frequency of the radiated photon)
- classically

\[
f_c = \frac{1}{T} \quad \text{and we know classically,}
\]

\[
\omega = \frac{\text{distance}}{\text{time}} = \frac{2\pi r_n}{T}
\]

\[
\therefore f_c = \frac{1}{T} = \left(\frac{2\pi r_n}{\omega} \right)^{-1} = \left(\frac{2\pi r_n}{n\hbar/\lambda} \right)^{-1} = \left(\frac{2\pi \hbar}{n\hbar} \right)^{-1}
\]

\[
= \left[\frac{2\pi m (n^2 \hbar^2 \left(\frac{Zmke^2}{n^4\hbar^4} \right)^2 \cdot \frac{1}{n^4\hbar^4}} {2\pi \hbar} \right]^{-1}
\]

\[
= \frac{n\hbar \cdot Z^2 m^2 k e^4}{n^4 \hbar^4} \cdot \frac{1}{2\pi \hbar}
\]

\[
= \frac{Z^2 m^2 k e^4}{2\pi \hbar^3 n^3} \quad \text{≈ } f_{qu} \text{ in the case of large quantum number, } n.
\]

Thus, both the classical & quantum approach to deriving
the frequency of the emitted photon agrees in the
large \(n \) limit — as required by the correspondence principle.
\[\frac{\Delta \lambda}{\lambda} = -\frac{\Delta \mu}{\mu} \]

Now, the wavelength of the spectral lines is given by
\[\frac{1}{\lambda_{mn}} = R \left(\frac{1}{m^2} - \frac{1}{n^2} \right) \] - the Rydberg-Ritz formula.

Bohr's theory predicts that
\[R = \frac{m_e^2 e^4}{4\pi \hbar^2 c^3} \rightarrow \frac{\mu^2 e^4}{4\pi \hbar^2 c^3} \]

where \(\mu = \text{reduced mass} \).

\[\frac{1}{\lambda} = \mu C \]

where \(C = \frac{k^2 e^4}{4\pi \hbar^2 c^3} \cdot \left(\frac{1}{m^2} - \frac{1}{n^2} \right) = \text{constant for a given } m \& n. \]

\[\lambda = C \mu \text{ or } \lambda = C' \mu^{-1} \]

where \(C' \) is a constant.

Differentiating both sides w.r.t. \(\mu \),
\[\frac{d\lambda}{d\mu} = C' \left(-\mu^{-2} \right) = -\left(C' \mu^{-1} \right) \mu^{-1} \lambda \]

\[\frac{d\lambda}{\lambda} = -\frac{d\mu}{\mu} \]

as required. \(\therefore \frac{\Delta \lambda}{\lambda} = -\frac{\Delta \mu}{\mu} \)

For the case of the Balmer red line, \(\lambda = 656.3 \text{ nm for hydrogen.} \)

For hydrogen, \(\mu = \frac{m_e M_H}{m_e + M_H} = \frac{m_e}{1 + \frac{m_e}{M_H}} \) now, \(m_e = 9.1094 \times 10^{-31} \text{ kg} \)
\(M_H = 1.6726 \times 10^{-27} \text{ kg} \)
\(M_D = 2M_H \)

\[\Delta \lambda = -\frac{\Delta \mu}{\mu} \lambda \]

\[\Delta \mu = \left(\frac{m_e M_D}{m_e + M_D} \right) - \left(\frac{m_e M_H}{m_e + M_H} \right) \]

\[D = \text{deuterium} \]

\[\Delta \mu = \frac{M_e}{1 + \frac{m_e}{2M_H}} - \frac{M_e}{1 + \frac{m_e}{M_H}} = (0.999728 - 0.999455) m_e \]
\[\Delta \mu = 0.000272 \text{ me} \]

\[\Delta \lambda = -\Delta \mu \cdot \frac{\lambda}{\mu_n} = -\frac{0.000272 \text{ me}}{0.999456 \text{ me}} \lambda = -0.000272 \lambda \]

\[\Delta \lambda = 0.18 \text{ nm} (0.179) \]

\[\lambda \approx 656.3 \text{ nm} \]
4.50 Singly ionised helium, He^+, is hydrogen-like in the sense that it is made up of a nucleus of charge $+2e$ & orbited by a single electron.

a) From the Bohr theory

$$E_n = -\frac{2^2 E_0}{n^2}$$ where $E_0 = +13.6$ eV.

To obtain the energy levels corresponding to He^+:

$$\begin{array}{c|c}
 n & E_n \text{ (eV)} \\
\hline
1 & -54.4 \\
2 & -13.6 \\
3 & -6.04 \\
4 & -3.40 \\
5 & -2.18 \\
\infty & 0 \quad \text{i.e. the electron is free} \Rightarrow \text{ionisation energy of } \text{He}^+ = 54.4 \text{ eV}
\end{array}$$

For the case of hydrogen, H:

$$\begin{array}{c|c}
 n & E_n \text{ (eV)} \\
\hline
1 & -13.6 \\
2 & -3.40 \\
3 & -1.51 \\
4 & -0.85 \\
5 & -0.54 \\
\infty & 0
\end{array}$$

b) K_α and K_β spectral lines occur for $n=2 \rightarrow 1$ & $n=3 \rightarrow 1$ respectively.

For hydrogen: K_α, $E_{K_\alpha} = -3.40 - (-13.6) = 10.2$ eV

$$h\nu = \frac{hc}{\lambda} \Rightarrow \lambda_{K_\alpha} = \frac{hc}{E_{K_\alpha}} = \frac{1239.8}{10.2} = 121.5 \text{ nm}$$
For hydrogen: \(K \beta \) \(E_{K\beta} = -1.51 - (-13.6) = 12.09 \text{eV} \)
\[\Rightarrow \lambda_{K\beta} = \frac{1239.8}{12.09} = 102.5 \text{nm} \]

Now, \(E_0 = \frac{m_e^2 e^4}{2\hbar^2} = 13.6 \text{ eV} \) using reduced mass, \(E_0 = \mu \frac{e^4}{2\hbar^2} \)
\[\mu = 0.999457 \text{ Me} \]
\[\Rightarrow E_0 \text{ reduced} = 13.59 \text{ eV} \]
\[\Rightarrow \text{no significant change in energy difference due to reduced mass correction.} \]

For He\(^+\): the Balmer series corresponds to electron transitions where the final level of the electron is \(n=2 \).

For He\(^+\) \(L_\alpha \Rightarrow n=3 \rightarrow 2 \)
\[\Rightarrow \lambda_{L\alpha} = \frac{1239.8}{7.56} = 164.0 \text{ eV} \]

\(E_{L\beta} = -3.40 - (-13.6) = 10.20 \text{ eV} \)
\[\Rightarrow \lambda_{L\beta} = \frac{1239.8}{10.20} = 121.5 \text{ eV} \]

\(d) \ E_n = -\frac{E_0}{n^2} \) (hydrogen) \[\Rightarrow \text{energy levels of He}^+ \text{ match up with energy levels of (2n)} \text{ for hydrogen.} \]

\((\text{He}^+) \)
Problem 5

Suppose Coulomb's electric force was of the form
\[\mathbf{F} = -br^2 \hat{r} \]
\(\hat{r} \) indicates attractive force

Recalculating Bohr's theory:
\[\sum \mathbf{F} = ma \Rightarrow br^2 = \frac{mv^2}{r} \tag{1} \]
angular momentum is quantised
\[(L = \ell) rmv = \ell \hbar \tag{2} \]

a) To obtain an expression for the radius:
\[r = \frac{n \hbar}{mv} \]
from (1) \[v^2 = \frac{br^3}{m} \]
\[\therefore v = \sqrt{\frac{br^3}{m}} \tag{3} \]
\[\therefore r = \frac{n \hbar m^{1/2}}{m b^{1/2} r^{3/2}} \]
\[r^{5/2} = \frac{n \hbar}{m b^{1/2} r^{3/2}} \]
squaring both sides:
\[r^5 = \frac{n^2 \hbar^2}{m b} \]
\[\therefore r \propto n^{2/5}, \quad as \ required \]

b) To determine the speed of the electron:
\[v = \sqrt{\frac{br^3}{m}} \Rightarrow v^2 = \frac{b}{m} (\frac{n^2 \hbar^2}{m b})^{3/5} = \frac{(n^2 \hbar^2)^{3/5}}{m^{3/5}} b^{2/5} \]
\[\therefore v = \left[\frac{n^2 \hbar^2 b^{3/5}}{m^{3/5}} \right]^{1/5} \]
Problem 5 (cont’d)

e) We know \(F = -\frac{dU}{dr} \)

\[U = -\int F \, dr \Rightarrow U = -\int -br^2 \, dr = \frac{br^3}{3} \]

and so \(U \propto r^3 \), as required.

d) \(E_{ tot} = K + U \) and \(K = \frac{1}{2}mv^2 \) : Recall \(\frac{mv^2}{r} = br^2 \)

\[\Rightarrow E_{ tot} = \frac{1}{2}br^3 + \frac{br^3}{3} \]

\[\Rightarrow E_{ tot} \propto r^3 \text{ and since } r \propto n^{2/5} \]

\[\Rightarrow E_{ tot} \propto (n^{2/5})^3 \]

\[\Rightarrow E_{ tot} \propto n^{6/5} \text{, as required.} \]

e) Now consider the case when \(\vec{F} = -\frac{b}{r} \hat{r} \)

In this case,

\[\frac{mv^2}{r} = \frac{b}{r} \quad (1) \]

\[\Rightarrow v^2 = \frac{b}{m} = \text{constant} \]

also, \(L = nh = rmv \)

\[\Rightarrow r = \frac{nh}{mv} = \text{constant} \cdot n \]

\[U = -\int F \, dr = -\int \frac{b}{r} \, dr = b \ln r \]
Problem 6

Consider the following hypothetical atom:

It has only 2 excited state (energy levels)

If a vapour of this type of atom was used in the Franck-Hertz experiment, expect inelastic collisions to occur when an excite electron from ground state to any excited state or ionisation.

\[
\begin{array}{ccccccc}
\text{current} & \text{at } & 4.0 & \text{ground level electron} & \text{excites to } 4.0 \text{eV level} \\
& & 7.0 & \text{"} & 7.0 \text{eV level} \\
& & 12.0 & \text{"} & 12.0 \text{eV level} \\
& & 14.0 & \text{"} & 14.0 \text{eV level} \\
& & 16.0 & \text{"} & 16.0 \text{eV level} \\
\end{array}
\]

At 9.0 eV atomic electron is ionised
\Rightarrow incident electron loses energy & so current drops.

- 12.0 incident electron has three collisions, each time losing 4.0 eV to atomic electron.
- 14.0 incident electron has two collisions, each time losing 7.0 eV to atomic electron.

1 collision: 4.0, 7.0
2 collisions: 8.0, 14.0, 11.0
3 collisions: 12.0, 15.0, 18.0, 20.0
4 collisions: 16.0, 19.0, ...

\[
\begin{array}{ccccccc}
4+4+4 & 4+4+7 & 4+7+7 & 7+7+7 \\
\end{array}
\]