1. A circuit and its phasor/impedance equivalent are shown below. Determine the current \(i(t) \), and sketch \(i(t) \) versus \(t \). Indicate the sine wave amplitude, frequency, and phase in the sketch. Note that \(\frac{1}{j} = \frac{\frac{1}{200^\circ}}{\frac{1}{200^\circ}} = 1\cdot -90^\circ = -j \).

\[
\nu(t) = 2\cos\left(\frac{1000\pi t}{1}\right)
\]
\[
\omega = \frac{1000}{\text{rad/s.}}
\]

\[
\begin{align*}
V &= \frac{1}{j\omega C} \\
Z &= R + \frac{1}{j\omega C} \\
&= 1000 - j2000
\end{align*}
\]

2. Classify each circuit below as one of the following types of filter: low-pass, high-pass, or band-pass. You can do this either by thinking about how each circuit operates as \(\omega \to 0 \) and \(\omega \to \infty \), or you can analyze the circuits as voltage dividers with impedances and study the resulting equations.