Steps in Computing Continuous-Time Convolution

\[y(t) = x(t) * h(t) = \int_{-\infty}^{\infty} x(\lambda) h(t - \lambda) \, d\lambda \quad (1) \]
\[= \int_{-\infty}^{\infty} x(t - \lambda) h(\lambda) \, d\lambda \quad (2) \]

You can use either (1) or (2), whichever is more convenient. The following steps are used for (1). If you use (2), then “flip and shift” \(x \) rather than \(h \).

1. Plot \(x(\lambda) \) and \(h(\lambda) \).
2. Plot \(h(-\lambda) \) [time-reverse] and \(h(t - \lambda) \) [add \(t \) to all ordinates] versus \(\lambda \).
3. **Do not skip this step:** Plot \(x(\lambda) \) and \(h(t - \lambda) \) on the same graph, versus \(\lambda \).

The location of \(h(t - \lambda) \) on the \(\lambda \)-axis will be a function of \(t \).
(Note that these functions appear inside the integral in (1).)

4. Repeat the following steps for every value of \(t \in (-\infty, \infty) \):
 (a) Form the product \(x(\lambda) \cdot h(t - \lambda) \) at all \(\lambda \) values.

 (You may want to plot this product on a graph versus \(\lambda \). This product will often "look different" when \(t \) takes on values in different intervals.)
 (b) Find the area under this product, i.e., evaluate \(\int_{-\infty}^{\infty} x(\lambda) h(t - \lambda) \, d\lambda \).

 (In many problems, the integration limits will depend on \(t \).)
 (c) The area you computed in step 4(b) is the value of \(y(t) \) for a particular value of \(t \) (or, more often, the result is valid for an interval of \(t \) values.)

5. It is usually best to write the equation for \(y(t) \) and to sketch a plot of \(y(t) \) versus \(t \).