Chapter 2

Graphs

A Friendly Introduction for Electrical and Computer Engineers

Probability and Stochastic Processes
Random Variables

Experiment: Procedure + Observations

Observation is an outcome

Assign a number to each outcome: Random variable

Random Variables
Three ways to get a RV:

- The RV is a function of a RV
- The RV is a function of the observation
- The RV is the observation

Random Variables
Discrete Random Variables

- Discrete RV X has PMF p_X
- X is discrete if \mathcal{X} is countable
- Range of X (\mathcal{X}, set of possible values) $\subseteq \mathbb{X}$

$[x = X]d = (x)^x d$
\((x)^P \bigcup_{B \in X} \left[y \in X \right] p = [B \in X] p = [B] p \)

For an event \(B \subseteq X \) we have

\[I = (x)^P \bigcup_{x \in X} x \left[y \in X \right] p \]

\[0 < (x)^P \]

PMF Properties
Bernoulli RV

Get the phone number of a random student. Let $X = 0$ if the last digit is even. Otherwise, let $X = 1$.

$$
\begin{align*}
1 &= x & d \\
0 &= x & d - 1
\end{align*}
= (x)^1 (1 - d)
$$
Binomial RV

circuits, each circuit is rejected with probability independent of other tests.

\[
\begin{align*}
\text{no. of rejects} &= Y \\
\text{otherwise} \quad u', \ldots, 1', 0 = \kappa \quad \gamma - u(d - 1) \gamma d(\gamma, u) \\
\end{align*}
\]

\[= (\kappa) \quad \gamma d\]

\[Y \] is the number of successes in \(n \) trials.

\[\text{no. of rejects} = Y \]

\[\text{other tests.}\]

\[\text{Test } n \text{ circuits, each circuit is rejected with probability independently of other tests.}\]
\[\begin{cases} 1 = \hat{f} & 0 \\ \hat{f}(d - 1) \end{cases} \}

\begin{align*}
(d - 1) \hat{d} &= [\hat{z} = \lambda] \hat{d}, \\
\hat{d} &= [\hat{1} = \lambda] \hat{d}.
\end{align*}

From the tree, \(d = \alpha \)

\begin{itemize}
 \item \(v \rightarrow d \rightarrow \hat{d} \)
 \item \(\hat{1} = \lambda \)
 \item \(\hat{z} = \lambda \)
\end{itemize}

First reject.

Circuit rejected with prob \(\lambda \). \(\hat{d} \) is the number of tests up to and including the

Geometric RV
otherwise \(0 \leq \alpha \leq 2 \),

\[
\left\{ \begin{array}{l}
0 \\
(1 - \alpha)(8 \cdot 0.2)
\end{array} \right.
\]

\[
\Rightarrow (\alpha) \chi_d
\]

Geometric: 0.2 = \(d \)
Events A and B are independent

$\{ \text{success on attempt } i \} = B$

$\{ \text{success in } i - 1 \text{ tests} \} = A$

$[B \land A] d = [i = T] d$

No. of tests, T, needed to find k rejects.

Pascal RV
otherwise
\[
\begin{cases}
\ldots \cdot \cdot \cdot + \eta, \eta = 1 & \eta \cdot (d - 1) \cdot 2d \left(\frac{1 - \eta}{1 - \eta} \right) \\
0 & \\
\end{cases}
\]
\[
[B]d [A]d = (I) \cdot d
\]
\[
(1 - \eta) \cdot (d - 1) \cdot 2d \left(\frac{1 - \eta}{1 - \eta} \right) = \\
[A]d = [A]d
\]

\[\text{Pascal continued}\]
otherwise

\[
\begin{array}{c}
\forall \ell = 1 \quad \ell \cdot (0.8 \cdot 0, 0, 0, 0) \quad (\ell - 1, 1)
\end{array}
\]
• Pascal
• Geometric
• Binomial
• Bernoulli

Summary
\begin{align*}
\text{otherwise} & \quad 0 = x \\ & \quad |x/\lambda - x| \\
\end{align*}
\begin{align*}
\begin{cases}
0 & \\
(\lambda x)^x I
\end{cases}
\end{align*}
\text{With } \alpha = xL.
\begin{itemize}
\item Arrival rate \(\lambda \), interval time \(T \).
\item Counts arrivals of something.
\end{itemize}
\textbf{Poisson RV}
Poisson: \(\alpha = 0.5 \)

\[
P_j(j) = \begin{cases}
(0.5)^j e^{-0.5}/j! & \text{if } j = 0, 1, \ldots \\
0 & \text{otherwise}
\end{cases}
\]
\[P(j) = \frac{e^{-\lambda} \lambda^j}{j!} \]

\[j = 0, 1, 2, \ldots \]

\[\sum_{j=0}^{\infty} P(j) = 1 \]

\[\sum_{j=0}^{\infty} \frac{e^{-\lambda} \lambda^j}{j!} = 1 \]

\[\int_{\lambda}^{\infty} \frac{e^{-\lambda} \lambda^j}{j!} \, d\lambda = 0 \]

\[\int_{0}^{\infty} \frac{e^{-\lambda} \lambda^j}{j!} \, d\lambda = \frac{1}{j!} \]

\[\sum_{j=0}^{\infty} \frac{e^{-\lambda} \lambda^j}{j!} = 1 \]

\[\int_{0}^{\infty} e^{-\lambda} \lambda^j \, d\lambda = \frac{\lambda^j}{j!} \]

\[\sum_{j=0}^{\infty} \frac{e^{-\lambda} \lambda^j}{j!} = 1 \]

\[\sum_{j=0}^{\infty} P(j) = 1 \]

\[\sum_{j=0}^{\infty} \frac{e^{-\lambda} \lambda^j}{j!} = 1 \]

\[\int_{0}^{\infty} e^{-\lambda} \lambda^j \, d\lambda = \frac{1}{j!} \]

\[\sum_{j=0}^{\infty} \frac{e^{-\lambda} \lambda^j}{j!} = 1 \]

\[\sum_{j=0}^{\infty} P(j) = 1 \]

\[\sum_{j=0}^{\infty} \frac{e^{-\lambda} \lambda^j}{j!} = 1 \]

\[\int_{0}^{\infty} e^{-\lambda} \lambda^j \, d\lambda = \frac{1}{j!} \]

\[\sum_{j=0}^{\infty} \frac{e^{-\lambda} \lambda^j}{j!} = 1 \]

\[\sum_{j=0}^{\infty} P(j) = 1 \]

\[\sum_{j=0}^{\infty} \frac{e^{-\lambda} \lambda^j}{j!} = 1 \]

\[\int_{0}^{\infty} e^{-\lambda} \lambda^j \, d\lambda = \frac{1}{j!} \]

\[\sum_{j=0}^{\infty} P(j) = 1 \]

\[\sum_{j=0}^{\infty} \frac{e^{-\lambda} \lambda^j}{j!} = 1 \]

\[\int_{0}^{\infty} e^{-\lambda} \lambda^j \, d\lambda = \frac{1}{j!} \]
The cumulative distribution function (CDF) of random variable X is

$$[x \geq X]d = (x)^X P$$

Cumulative Distribution Functions
At the discontinuities r is the upper value. (right hand limit)
CDF Properties

For any discrete RV X, range X, satisfying $\{ \ldots, x, x, \ldots \} = X$.

\begin{align*}
1 + x &> x \geq \frac{x}{2} \text{ for } (\frac{x}{2})X_H = (x)X_H \quad \bullet \\
(\frac{x}{2})X_H &= (\varepsilon - \frac{x}{2})X_H - (\frac{x}{2})X_H \\
\text{For all } x \in \mathbb{R} \text{ and small } \varepsilon > 0 \quad \bullet \\
(x)X_H &< (\frac{x}{2})X_H, x < \frac{x}{2} \quad \bullet \\
1 &= (\infty)X_H \text{ and } 0 = (\infty-)X_H \quad \bullet \\
\ldots \geq \frac{x}{2} \geq 1 \quad \text{satisfying } \{ \ldots, x, x, \ldots \} = X \text{ and } X \text{ range } X.
\end{align*}
The expected value of X is also called the average of X.

\[
\begin{align*}
\sum_{x \in X} x p(x) &= x \cdot 1 = [X] \mathbb{E} \\
\text{The expected value of } X \text{ is } &\text{Expected Value}
\end{align*}
\]
Average of samples:

If each occur m times,

$\sum_{x \in X} x = \sum_{x \in X} \sum_{u \in U} x = \sum_{u \in U} \sum_{x \in X} x = \sum_{u \in U} \sum_{x \in X} x$

Each $x \in X$ occurs m times.

Average of u samples:

$[X] \in \mathbb{E}$

Average vs.
Each sample value of a derived RV is a function \(g(x) \) of a sample value \(x \) of a RV \(X \).

Notation:

\((X)g = Y \)

Experimental Procedure

1. Perform experiment, observe outcome.

2. Find \(x \), the value of \(X \).

3. Calculate \((x)g \).
\[\hat{\alpha} = (x) \delta : x \]
\[
\left(x \right)^\chi_D \subset \subseteq \ = \left(\hat{\alpha} \right)^\chi_D
\]
\[
\left(\hat{X} \right) \delta = \lambda \ j^0 \ \text{PMF}
\]
Problem 2.6.5

Source transmits data packets to receiver. If received packet is error-free, receiver sends back ACK, otherwise NAK sent. For each NAK, the packet is resent. Each packet transmission is independently corrupted with prob \(p \).

Find the PMF of \(X \), no. of times a packet is sent. Each packet takes 1 msec to transmit. Source waits 1 msec to receive ACK. \(T \) equals the time req'd until the packet is received OK. What is \(\mathbb{P}(T) \)?

Source transmits data packets to receiver.
$q + [X] \mathbb{E} p = (x) \sum_{x \in X} x f(x) \mathbb{E} = [\lambda] \mathbb{E}$

Example: $q + Xp = \lambda$.

$\sum_{x \in X} (x) f(x) \mathbb{E} = \lambda \mathbb{E} = [\lambda] \mathbb{E}$

Thm: Given RV X with PMF p, the expected value of $(X)^\delta$ is λ.

\mathbb{E}
Variance and Standard Deviation

Units of \(\mathcal{X} \) are the same as \(X \).

\[
[X]_{\text{Var}} = \mathcal{X} \quad \text{Standard Deviation}
\]

Variance measures spread of PMF

\[
[X]_{\text{Var}} = \left(\sum_{x \in \mathcal{X}} x \mathcal{P}(x \mathcal{M} - X) \right) = [\lambda] \mathcal{E}
\]

\[
\mathcal{P}(x \mathcal{M} - X) = \lambda \quad \text{Variance}
\]

Variance and Std Deviation
Properties of the variance

\[[X]^{\text{Var}} \cdot \varphi = [\lambda]^{\text{Var}} \cdot X' \cdot \lambda = \lambda \cdot I \]

\[[X]^{\text{Var}} = [\lambda]^{\text{Var}} \cdot q + X = \lambda \cdot I \]
Two kinds of conditioning.

\[[B \mid x = X] d = (x) \frac{B \mid X}{P} \]

Given \(B \), with \(P_B > 0 \).

Conditional PMF of \(X \) given \(B \)
Probability model tells us $P_X | B^z (x)$ for possible B^z. Example: In the ith month of the year, the number of cars crossing the GW bridge is Poisson with parameter λ. Conditional PMFs - Version 1
Conditional PMFs - Version 2

is an event defined in terms of

\[
\begin{align*}
B \ni x \quad &\left\{ \begin{array}{l}
0 & \text{otherwise} \\
\frac{[B]d}{(x)\times d} & \text{if } B \ni x \ni X \ni X
\end{array} \right. \\
\end{align*}
\]

\[
= \frac{[B]d}{[B, x = X]d} = (x)_{(X, X)}d
\]

\(B \) is a subset of \(S \) such that for each \(x \in S \), either \(x \in B \) or \(x \notin B \).

\(B \) is an event defined in terms of \(X \).
Example: X is geometric with $p = 0.1$. What is the conditional PMF of X given event B that $X < 9$?
\[\mathbb{E} \left(r([B|X]\mathbb{E} - X) \right) \mathbb{E} = [B|X] \mathbb{E} \]

\((x) \frac{d}{dx} \mathbb{E} \mathbb{E} \mathbb{E} = [B|(X)\mathbb{E}] \mathbb{E} \)

\((x) \frac{d}{dx} \mathbb{E} \mathbb{E} \mathbb{E} = [B|X] \mathbb{E} \)

(\(q|x \)) \frac{d}{dx} \mathbb{E} \mathbb{E} \mathbb{E} = \text{Replace } (x) \) \(X \) \(P \) with (\(x \)) \(X \) \(P \) \(\text{Conditional Expectations} \)