Aging of a Glass: A Computer Simulation

Katharina Vollmayr-Lee, Jake Roman, Jürgen Horbach
Bucknell University

\[C_q(t_w + t) \]

\[t_w = 24.0 \text{ ns} \]

\[t_w = 0 \text{ ns} \]

\[T_i = 5000 \text{ K} \]

Acknowledgments: A. Zippelius & Institute of Theoretical Physics, University Göttingen, Germany
Introduction: Glass

Glass:
- System falls out of equilibrium

Structure: discordered
Introduction: Glass

Glass:
- System falls out of equilibrium

Structure: disordered
Dynamics: frozen in
Introduction: Dynamics

- slowing down of many decades
- strong and fragile glass formers
- SiO_2 strong glass former
System: SiO$_2$

- rich phase diagram
- similar to water (H$_2$O)

Model: BKS Potential

[B.W.H. van Beest et al., PRL 64, 1955 (1990)]

\[\phi(r_{ij}) = \frac{q_i q_j e^2}{r_{ij}} + A_{ij} e^{-B_{ij} r_{ij}} - \frac{C_{ij}}{r_{ij}^6} \]

112 Si & 224 O \[\rho = 2.32 \text{ g/cm}^3 \]

\[T_c = 3330 \text{ K} \]
Numerical Solution: Euler Step

Initialize:
\[x(t_0), \ v(t_0), \ a(t_0) \]

\[x(t_0 + \Delta t), \ v(t_0 + \Delta t), \ a(t_0 + \Delta t) \]

\[x(t_0 + 2 \Delta t), \ v(t_0 + 2 \Delta t), \ a(t_0 + 2 \Delta t) \]

etc.

= Iteration Step:
\[x(t + \Delta t) = x(t) + v(t) \Delta t \]
\[v(t + \Delta t) = v(t) + a(t) \Delta t \]
\[a(t) = F(t)/m = -(dU/dx)(t) \]
Molecular Dynamics Simulation

Initialize:

\[
\vec{x}_i(t_0), \quad \vec{v}_i(t_0), \quad \vec{a}_i(t_0)
\]

particles \(i=1, \ldots, N \)

three dimensions

Iteration Step: (Velocity Verlet)

\[
\begin{align*}
\vec{x}_i(t + \Delta t) &= \vec{x}_i(t) + \vec{v}_i(t) \Delta t + \vec{a}_i(t) (\Delta t)^2 / 2 \\
\vec{v}_i(t + \Delta t) &= \vec{v}_i(t) + (\vec{a}_i(t) + \vec{a}_i(t + \Delta t)) \Delta t / 2 \\
\vec{a}_i(t) &= \vec{F}_i(t) / m_i = -\nabla_i U(t) / m_i
\end{align*}
\]
Dynamics: Aging to Equilibrium

20 initial configurations

T

Simulation Runs

5000 K T_i
3760 K

3250 K T_f
3000 K

2750 K
2500 K

NVT (Nose Hoover)
NVE (Velocity Verlet)

0.33 ns 33 ns

waiting time

T

t_w

Simulation Runs

NVT (Nose Hoover)
NVE (Velocity Verlet)

waiting time t_w

Simulation Runs

NVT (Nose Hoover)
NVE (Velocity Verlet)

waiting time t_w

Simulation Runs

NVT (Nose Hoover)
NVE (Velocity Verlet)

waiting time t_w
Partial Structure Factors

\[S_{\alpha\beta}(q, t_w) = \frac{1}{N} \sum_{i=1}^{N_{\alpha}} \sum_{j=1}^{N_{\beta}} e^{i \mathbf{q} \cdot (\mathbf{r}_i(t_w) - \mathbf{r}_j(t_w))} \]

- \(t_w \) dependence weak
- in following:
 - \(C_q(t_w, t_w + t) \)
 (mostly \(q \) of FSDP)
 - \(\Delta r^2(t_w, t_w + t) \)
Generalized Intermediate Incoherent Scattering Function

\[C_q(t_w, t_w + t) = \frac{1}{N_\alpha} \sum_{j=1}^{N_\alpha} e^{i \vec{q} \cdot (\vec{r}_j(t_w + t) - \vec{r}_j(t_w))} \]

\[T_i = 5000 \text{ K} \quad T_f = 2500 \text{ K} \]

- **\(t_w \) small:**
 - \(t_w = 0 \) & \(t \lesssim 5 \cdot 10^{-5} \) ns:
 - \(T_i \) good approx.
 - no plateau
 - decay \(t_w \)-dependent

- **\(t_w \) intermediate:**
 - plateau \(t_w \)-indep.
 - decay \(t_w \)-dependent

- **\(t_w \) large:** \(t_w \)-indep.
 - \(\longrightarrow \) equilibrium
Generalized Intermediate Incoherent Scattering Function

\[C_q(t_w, t_w + t) = \frac{1}{N\alpha} \sum_{j=1}^{N\alpha} e^{i\vec{q} \cdot (\vec{r}_j(t_w+t)-\vec{r}_j(t_w))} \]

- \(T_i = 3760 \) K \(T_f = 3000 \) K
- \(t_w \) small:
 - \(t_w = 0 \) & \(t \lesssim 5 \cdot 10^{-5} \) ns:
 - \(T_i \) good approx.
 - no plateau
 - decay \(t_w \)-dependent
- \(t_w \) intermediate:
 - plateau \(t_w \)-indep.
 - decay \(t_w \)-dependent
- \(t_w \) large: \(t_w \)-indep.
 \(\longrightarrow \) equilibrium
Generalized Intermediate Incoherent Scattering Function

\[C_q(t_w, t_w + t) = \frac{1}{N_\alpha} \sum_{j=1}^{N_\alpha} e^{i\vec{q} \cdot (\vec{r}_j(t_w + t) - \vec{r}_j(t_w))} \]

\[t_w \text{ small:} \]
- \(t_w = 0 \& t \lesssim 5 \cdot 10^{-5} \text{ ns} \):
 - \(T_i \) good approx.
 - no plateau
 - decay \(t_w \)-dependent

\[t_w \text{ intermediate:} \]
- plateau \(t_w \)-indep.
- decay \(t_w \)-dependent

\[t_w \text{ large:} \]
- \(t_w \)-indep.
- equilibrium

\(t_w = 24.0 \text{ ns} \)

\(q = 1.7 \text{ Å}^{-1} \)

\(T_i = 5000 \text{ K} \)

\(T_f = 2500 \text{ K} \)
Plateau Height

\[F(q) \]

- \(T_f = 2500 \text{ K} \)
- \(T_f = 2750 \text{ K} \)
- \(T_f = 3000 \text{ K} \)
- \(T_f = 3250 \text{ K} \)
- \(T_i = 3760 \text{ K} \)
- \(T_i = 5000 \text{ K} \)

Definition:

- Intermediate and large \(t_w \):
 - \(F(t_w) \) indep. of \(t_w \)
 - \(F(q) \) independent of \(T_i \)
Generalized Intermediate Incoherent Scattering Function

\[C_q(t_w, t_w + t) = \frac{1}{N_\alpha} \sum_{j=1}^{N_\alpha} e^{i\vec{q} \cdot (\vec{r}_j(t_w + t) - \vec{r}_j(t_w))} \]

- **\(t_w \) small:**
 - \(t_w = 0 \) & \(t \lesssim 5 \cdot 10^{-5} \) ns:
 - \(T_i \) good approx.
 - no plateau
 - decay \(t_w \)-dependent

- **\(t_w \) intermediate:**
 - plateau \(t_w \)-indep.
 - decay \(t_w \)-dependent

- **\(t_w \) large:** \(t_w \)-indep.
 - \(\rightarrow \) equilibrium
Three t_w Ranges:

- **t_w small:**
 - t_r^{Cq} incr. with incr. t_w
 - slope T_i & T_f dep.

- **t_w intermediate:**
 - t_r^{Cq} incr. with incr. t_w

- **t_w large:**
 - t_r^{Cq} indep. of t_w & T_i
 - \Rightarrow equilibrium reached

t_w Ranges dependent on T_i
Generalized Intermediate Incoherent Scattering Function

\[C_q(t_w, t_w + t) = \frac{1}{N_\alpha} \sum_{j=1}^{N_\alpha} e^{i\vec{q} \cdot (\vec{r}_j(t_w + t) - \vec{r}_j(t_w))} \]

- **\(t_w \) small:**
 - \(t_w = 0 \) & \(t \lesssim 5 \cdot 10^{-5} \) ns:
 - \(T_1 \) good approx.
 - no plateau
 - decay \(t_w \)-dependent

- **\(t_w \) intermediate:**
 - plateau \(t_w \)-indep.
 - decay \(t_w \)-dependent
 - time superposition ?

- **\(t_w \) large:** \(t_w \)-indep.
 - \(\rightarrow \) equilibrium
Generalized Intermediate Incoherent Scattering Function

$$MF: \quad C_q(t_w, t_w + t) = C_q^{ST}(t) + C_q^{AG} \left(\frac{h(t_w + t)}{h(t_w)} \right)$$

Superposition: $$C_q(t_w, t_w + t) = C_q^{ST}(t) + C_q^{AG} \left(\frac{t}{t_{r,q}^{Cq}(t_w)} \right)$$

- t_w small: no time superposition
- t_w intermediate: time superposition
- t_w large: superposition includes equilibrium curve

LJ: [Kob & Barrat, PRL 78, 24 (1997)]
Generalized Intermediate Incoherent Scattering Function

\[C_q(t_w, t_w + t) = C_q^{ST}(t) + C_q^{AG} \left(\frac{h(t_w+t)}{h(t_w)} \right) \]

Is \(h \) dependent on \(C_q \)?

\[\begin{array}{c|c}
\text{\(t_w \) small:} & \text{no superposition} \\
\text{\(t_w \) intermediate:} & \text{superposition of } C_q'(C_q) \\
& \Rightarrow h \text{ indep. of } C_q \\
\text{\(t_w \) large:} & \text{superposition includes equilibrium curve} \\
\end{array} \]

O-atoms
\(T_i = 5000 \text{ K} \)
\(T_f = 2500 \text{ K} \)

LJ: [Kob & Barrat, EPJ B 13, 319 (2000)]
Mean Square Displacement

\[
\Delta r^2(t_w, t_w + t) = \frac{1}{N} \sum_{i=1}^{N} (r_i(t_w + t) - r_i(t_w))^2
\]

Three \(t_w \) Ranges:

- **\(t_w \) small:**
 - \(t_w = 0 \) & \(t \lesssim 5 \cdot 10^{-5} \) ns:
 - \(T_i \) good approx.
 - no plateau
 - increase \(t_w \)-dependent

- **\(t_w \) intermediate:**
 - plateau \(t_w \)-indep.
 - increase \(t_w \)-dependent

- **\(t_w \) large:** \(t_w \)-indep.
 \(\longrightarrow \) equilibrium
Mean Square Displacement

\[\Delta r^2(t_w, t_w + t) = (\Delta r^2)^{ST}(t) + (\Delta r^2)^{AG}\left(\frac{t}{t_r^{msd}(t_w)}\right) \]

- **\(t_w\) small:** no time superposition
- **\(t_w\) intermediate:** no time superposition
- **\(t_w\) large:** no time superposition
Summary

\(C_q(t_w, t_w + t)\) and \(\Delta r^2(t_w, t_w + t)\):

Three \(t_w\) Ranges:

- **\(t_w\) small:**
 - \(t_w = 0\) and \(t\) small: \(T_i\) good approx.
 - dependent on \(t_w\), \(T_i\), \(T_f\)

- **\(t_w\) intermediate:**
 - plateau indep. of \(t_w\) and \(T_i\)
 - \(C_q\) time superposition (not \(\Delta r^2\))
 - \(C_q^{\text{AG}}\left(\frac{h(t_w+t)}{h(t_w)}\right): h\) is \(C_q\) indep.

- **\(t_w\) large:**
 - indep. of \(t_w\) and \(T_i\) \(\rightarrow\) equilibrium
 - for \(C_q\) equilibrium included in superposition
Past & Future:

Binary Lennard Jones:

- jumps [KVL, JCP 121, 4781 (2004)]
- self-organized criticality (correlated jumps) [KVL, E.A. Baker, EPL 76, 1130 (2006)]

SiO$_2$:

- aging to equilibrium [to be submitted to PRE]
- local C'_q [A. Parsaeian, H.E. Castillo, KVL, to be published]
- jumps (R. Bjorkquist, L. Chambers)

Acknowledgments:
A. Zippelius & Institute of Theoretical Physics, University Göttingen, Germany