C-Exercises: Functions & Pointers

6. In the Exercise 1, you first added up the prices of the five products and then added the tax. Write a function which uses as input parameter the price without tax and returns the final price with tax (6.123 %).

7. Write a function which calculates \(n! \). \((n! = 1 \cdot 2 \cdot 3 \ldots \cdot n)\). Test it with a program that reads in \(n \) and prints out \(n! \) (use \(n < 14 \)). What happens if you use \(n = 20 \) or \(n = 40 \)?

8. Write a function that converts seconds into hours + minutes + seconds. Test this function with a program that reads in seconds and prints out the number of days, hours, minutes and seconds. For example 63893 s = 17 h 44 m 53 s.

Hint: The integer division and modulo function “\%” are for this problem useful.

9. **Traffic Flow**
Write a program that reads in the following road data:
~ kvollmay/classes.dir/capstone_s2001.dir/unix_C_intro.dir/road2.data
(where -1 means no car and 1 means a car), uses a function to move each car one site to the right (the last site is connected to the first site as in exercise 5.) and prints out the new road.

Solutions to Exercises 3.-5.:
~ kvollmay/classes.dir/capstone_s2001.dir/unix_C_intro.dir/C_3.c
~ kvollmay/classes.dir/capstone_s2001.dir/unix_C_intro.dir/C_4.c
~ kvollmay/classes.dir/capstone_s2001.dir/unix_C_intro.dir/C_5.c