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ABSTRACT

This thesis explores the application of wireless sensor network technology in res-

idential buildings to monitor and control energy consumption. The technologies

developed in this thesis provide a communications backbone so that building systems

and appliances can share information. By enabling the free flow of information, we

can first collect detailed building performance data. Second, we can rapidly deploy

sophisticated whole-house energy optimization strategies.

The centralized building automation and control systems typically found in com-

mercial buildings are typically complex, require expert installation, and costly. In

contrast, our peer-to-peer approach utilizing a self-configuring wireless network pro-

vides the flexibility and reduced cost required for the residential environment. We

first explore the use of non-intrusive load monitoring to automatically extract detailed

energy usage information from simple aggregate measurements. This information

can, for example, be used to identify wasteful devices. To efficiently distribute sen-

sor data throughout the wireless network, we have developed PIM-WSN, the first

general-purpose multicast implementation for IP-based wireless sensor networks. To

better understand how occupant behaviors impact energy consumption, we have eval-

uated 8 energy saving behaviors in homes for 10 weeks. The results were surprising

as no single behavior significantly reduced energy consumption. However, we dis-

covered that even motivated homeowners are unwilling to manually implement many

energy saving behaviors. To explore automation of these behaviors, we developed

a prototype occupancy-based solution and achieved 7%-14% energy savings in office

environments. To enable deployments in residential homes, we developed a complete

platform based on these demonstrated principles. From several deployments, we ob-

served an 88% reduction in standby losses for home entertainment devices and saved

195 kWh per day by automating basic energy saving behaviors. The completed

platform is highly adaptable to new problems and provides sensing and a physical
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interface between the building and the control algorithm. This architecture is now

available as a resource to implement future control strategies in residential buildings.
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CHAPTER 1

INTRODUCTION

The U.S. department of energy reports that buildings were responsible for 39%

of the total energy consumption in the U.S. in 2009 [1]. In the typical U.S. home,

75% of the energy consumption is used for space heating, cooling, water heating,

and lighting. The remaining 25% is consumed by miscellaneous electronic loads (e.g.,

home entertainment, home office, battery chargers). Due to improvements in building

construction, the relative load presented by these electronic devices is predicted to rise

to 34% by 2020 [2]. Energy is a precious resource and it is essential that we develop

technologies to provide detailed monitoring and control of energy consumption in

buildings.

Because a large portion of building energy consumption is closely tied to occu-

pant behavior, numerous monitoring systems have been recently developed [3–5] to

provide occupants with detailed feedback on their energy consumption. The theory

is that given detailed feedback the occupants can modify their behavior to reduce

consumption. The potential impact of such data is significant. However, feedback

alone does not always result in savings. A recent study observed an initial 31.9%

reduction in energy consumption after installing a monitoring system; however, after

a month the reduction fell to only 3.7% [6]. This illustrates that while significant

savings are possible, relying on occupants to change their long-term behavior may be

difficult. As a result, our ultimate goal is to develop an architecture for intelligent

control systems that can be used to automate energy savings in buildings.

Another benefit to developing an architecture for intelligent building automation

and control systems is the opportunity to take advantage of a SmartGrid interface

and implement demand response. A SmartGrid is an electrical distribution network

that incorporates two-way communication between the energy consumer and pro-

ducer. Demand response allows loads to be varied in response to the state of the
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electricity grid. When there is an excess of energy, devices such as hot water heaters,

refrigerators, air conditioners, or battery chargers could alter their schedule to imme-

diately use the excess. This capability is useful when paired with wind turbine and

solar photovoltaic generation. Gusty winds result in power output that may have sig-

nificant peaks relative to the mean output. By linking the consumer directly to the

generation sources through a two-way communication network we can schedule cyclic

devices in phase with the generation, thereby optimizing performance. Conversely,

when generation is temporarily decreased or demand begins to peak, operation of

these cyclic devices can be temporarily postponed resulting in better synchronization

between energy production and consumption. Demand response results in a more

efficient grid because less spinning reserve generation (i.e. generators running at low

output to respond quickly to changing demand) is required.

1.1 Our Approach

This thesis explores the application of wireless sensor network technology in res-

idential buildings to monitor and ultimately control energy consumption. Wireless

sensor networks are built using low-cost computing platforms coupled with industry

standard radio systems (e.g., IEEE 802.15.4 [7]). These networks provide a communi-

cations backbone so that building systems, appliances, and devices can shared relevant

information. This information can then be used by an intelligent building automa-

tion and control (BAC) system to minimize energy consumption by implementing

demand response, load scheduling, occupancy-based control, intelligent lighting, and

other general-purpose automation and control strategies.

Currently, building automation and control systems are deployed in commercial

buildings and rely on numerous hardwired sensors using a myriad of communication

protocols (BACnet [8], LonTalk [9], ModBus [10], etc.) to communicate data to

a central controller. Wireless protocols (ZigBee [11], Wireless HART [12], EnOcean

[13], etc.) have been employed to replace some or all of the wired links. However, even
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when wireless components are used, a central controller is still responsible for making

control decisions. The central controller is typically a programmable logic controller

(PLC) that implements basic automation tasks. This thesis presents a completely new

approach that is a paradigm shift from centralized control to a distributed approach

for building automation and control. This is motivated by the observation that the

microcontrollers typically found on wireless platforms are capable of implementing

basic automation and control tasks without relying on a central controller. The end

result is by simply utilizing wireless components we eliminate the need for a central

controller. This approach yields a highly adaptable system that is well suited to

implement automation and control in residential buildings.

1.2 Research Contributions and Dissertation Organization

To achieve the goals of detecting energy waste and automating energy savings in

buildings, this dissertation makes the following contributions:

Chapter 3: Circuit-Level Load Monitoring for Household Energy Management.

There are two basic approaches for monitoring energy consumption in the home.

The first is to simply use whole-house energy measurements. This is easy, but

does not provide detailed information about the energy consumption of each

device. The second approach is to directly monitor the energy consumption

of each device in the home. This creates a very detailed picture of household

energy consumption, but is costly to implement. This chapter explores an al-

ternative approach to monitor household energy usage, including small devices,

by using circuit-level power measurements. We have developed and evaluated

two algorithms to disaggregate the circuit-level data into device-level estimates.

Our evaluation resulted in an average error less than 5.35% when separating

energy usage from the aggregate of three small devices.
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Chapter 4: PIM-WSN: Efficient Multicast for IPv6 Wireless Sensor Networks.

We envision that wireless building automation and control systems will employ

sensors that share data directly with automation and control nodes. One way

to implement this information sharing is to use multicast communication. Mul-

ticast communication simplifies this task for the sensor by using the network

layer to disseminate sensor data in a robust and efficient manner. However,

existing solutions for multicast in WSNs are limited because they either sup-

port multicast only from a single source node (usually the root node) or they

limit the multicast group size to constrain memory usage. To solve both of

these problems, we have developed PIM-WSN, a protocol independent multi-

cast (PIM) protocol tailored for IPv6 WSNs. Our design is the first general

purpose multicast for WSNs that allows any node to be a mulitcast source and

have an unlimited number of subscribers. Using detailed simulations we show

that PIM-WSN achieves 1) high packet delivery rate (over 97%), 2) low latency

per hop (less than 5 ms), and 3) lower radio utilization than all other compa-

rable protocols (by more than 50%). Using a ten-hop testbed of TelosB motes

we have verified our implementation of PIM-WSN for TinyOS 2.x with the Blip

IPv6 networking stack which uses only 5,978 bytes of ROM and 235 bytes of

RAM.

Chapter 5: Building the Case For Automated Building Energy Management.

Two basic questions regarding automated building energy systems are why we

need them and how much energy will they save? To address these questions,

we have evaluated 8 energy-saving behaviors, as well as the use of an in-home

display (IHD), in 10 homes over the course of 10 weeks. In the end we found that

no single energy-saving behavior significantly impacted energy consumption.

However, for several energy-saving behaviors, fewer than half of the participants

reported implementing the behavior. This suggests that automated building
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energy management systems may be necessary to realize the full benefits of

these behaviors.

Chapter 6: Distributed Wireless Control for Building Energy Management.

Chapter 5 suggests that automated building energy management systems may

be necessary to reduce the influence of behaviors on energy consumption. Chap-

ter 6 demonstrates how PIM-WSN can be used in a wireless building energy

management to share sensor data. Dedicated sensor and energy controller nodes

are also described. The sensor nodes transmit data using PIM-WSN. Energy

controller nodes automatically detect and utilize the shared information to im-

plement an occupancy-based energy control strategy. This study resulted in an

energy savings of 7.1% - 14.6% for the measured loads.

Chapter 7: Achieving Reliable Wireless Automation and Control Using Global

Shared Memory. To improve the robustness of wireless building energy manage-

ment systems, this chapter presents a complete system based on a global shared

memory (GSM) networking abstraction. GSM addresses the primary challenge

for a wireless building automation and control system, reliability. Reliability is

difficult to guarantee using typical networking protocols, like PIM-WSN. Here

we trade some efficiency for improved reliability by maintaining a complete

copy of the global shared memory on each sensor node. Nodes communicate

in their one-hop neighborhood to synchronize all shared values. After network

disconnections or other disruptions, the shared values will quickly synchronize

to the most recent values. Using this approach, we observed an 88% reduction

in standby losses for a home entertainment system. Using published statistics

on home entertainment and home office systems, we expect this approach, on

average, to reduce energy consumption of these devices by 17%, or equivalently

a 2.3% reduction in whole-house energy consumption. This provides a robust
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foundation for implementing any general purpose distribute automation and

control system.

1.3 Broader Impacts

The broader impacts of this research include disseminating results through pub-

lications, software releases, and hardware designs. In addition to these research im-

pacts, we expect that the results from these efforts could be translated with low-risk

to the commercial market. In this process there is also the potential to create new

jobs supporting these products from the engineering, business, and manufacturing

sectors. Finally, if the building automation and control strategies presented in this

thesis were adopted nationwide (assuming 50% penetration) for home entertainment,

home office devices, and HVAC, national energy consumption would be reduced by

0.42 quadrillion BTU per year.
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CHAPTER 2

RELATED WORK

The general topic of building monitoring and control has been studied for decades.

This thesis presents a complete system for monitoring and controlling energy usage

using a wireless sensor network (WSN). It relies and builds on a large amount of

existing work from WSNs. Wireless sensor networks are a relatively new concept

that has been growing in popularity for the last decade. Here we provide an overview

of the state of the art as well as a historical perspective of research in these fields

that is most relevant to this dissertation. We begin with an overview of residential

building monitoring and control systems in Chapter 2.1. Chapter 2.2 begins our

exploration into WSN technology by examining the most commonly used operating

systems used for research. To build up the WSN networking stack, Chapter 2.3,

provides an overview of contemporary WSN networking architectures. Finally, Chap-

ter 2.4, completes our exploration by describing high-level abstractions that treat the

WSN as a whole and provide abstractions for programming, collecting, and displaying

sensor data. Through this exploration we can determine which of these approaches

would be useful for building energy monitoring and control.

2.1 Building Monitoring and Control Systems

Perhaps the earliest example of an advanced building monitoring and control sys-

tem is the Neural Network House [14]. The Neural Network House contains about 75

sensors and actuators wired to a central controller. The goal of the Neural Network

House is twofold: appeasing the inhabitants and conserving energy. As the name im-

plies neural networks are used to predict behaviors and then automatically configure

the environment by controlling lights and the heating and cooling systems.

One modern solution similar to the Neural Network House is offered by Control4.

Control4 is a commercial home automation solution that integrates home theater,
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lighting, temperature, and security components with a central controller [15]. There

is a significant emphasis on entertainment in the Control4 system. There is no energy

monitoring beyond knowing the state of devices (on/off). Control4 is mainly a con-

venience for the occupant by allowing control and automation of the home’s systems

through their central server. Both wired and wireless devices are supported.

Recently researchers at the University of California San Diego have developed the

Energy Dashboard [3]. This is a large deployment of energy meters on nearly all

buildings on their campus. Certain buildings have multiple meters allowing energy

usage to be viewed at varying levels of granularity (i.e., whole-building, by floor,

HVAC, lighting, etc). This is currently the largest, most detailed, energy metering

project that we are aware of. Although the energy data is reported in real time, no

supplemental data (occupancy, light, etc) is collected. This is also a passive system

that only enables visualization and analysis of the data collected data.

Understanding energy usage in detail is a difficult challenge. One approach is

the AC Meter (ACme) [5, 6]. ACme is a wireless energy meter that uses TinyOS

and the Blip IPv6 networking stack with an IEEE 802.15.4 radio. By collecting high

fidelity energy measurements the authors dissect a building’s energy consumption and

identify potential savings. ACme was only used for monitoring, however, it provides a

good starting point to design a sensor node for both monitoring and control functions.

Tendril is a commercial company with an offering similar to the ACme that enables

demand response [16]. To offer a better demand response capability it monitors the

energy usage of individual end devices. This energy usage is reported back to a central

server using a ZigBee wireless network in the home. When instructed by the central

server the device will turn off to reduce demand. Tendril’s service partially matches

our goals, however, it does not integrate data from different sensors to make control

decisions. Also, because energy usage is monitored and transmitted to a central server

through an Internet gateway, this node becomes a significant bottleneck.
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A WSN-based conference room management system called iSense [17] has also

been demonstrated. This system is similar to ours in that it uses several different

sensors to detect when a room is being used. If the room is not being used and the

lights or HVAC have been left on, it will alert someone to turn them off.

Our vision is a system similar to the Neural Network House or a Control4 home

automation system. However, we prefer to allow the occupant to manually control

devices and only enforce energy savings measures (such as turning off devices when

the home is unoccupied). A significant portion of the functionality of theses systems is

beyond our scope, for example, the Neural Network House might detect that you want

to listen to music and even which music you want. The most significant challenge

we plan to address is to remove the need for a central controller and of course any

wires. In this regard, we will blend in ideas demonstrated by the Energy Dashbord,

ACme, Tendril, and iSense to produce a fully functioning home energy monitoring

and control system.

2.2 Wireless Sensor Operating Systems

The predominant operating system used for research on wireless sensor networks

in the United States is currently TinyOS [18, 19]. TinyOS is a component-based oper-

ating system with many useful components for common WSN tasks, such as handling

a packet [20]. Other components include those for routing, sensing, actuation, and

storage. Applications using TinyOS are written in the network embedded systems C

(nesC) [21] programming language. In nesC components are defined through inter-

faces and “wired” together to create a complete application.

One of the reasons TinyOS has been successful is that it is has a good balance

of functionality, flexibility, and simplicity. Basic applications can be implemented

with only a few kB of memory, so even the most resource constrained nodes can

be supported. On the other hand, sophisticated applications can also be built by

combining many components. In short, TinyOS is applicable to solve a broad range of
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problems and allows the system designer the choice to use many pre-built components

and work at a high level, or to implement functionality at a very low level.

TinyOS, however, is not the only option for WSN operating systems. Contiki, de-

veloped by Adam Dunkels of the Swedish Institute of Computer Science, has seen sig-

nificant use, mostly in the European research community. Contiki is an event-driven

system like TinyOS; however, rather than using a component structure, protothreads

are used to simulate a threaded environment [22]. The growth of Contiki is partially

due to robust support for both IPv4 and IPv6 networking standards.

A more traditional approach is to use existing ideas about operating systems and

apply them to the sensor node. Nano-RK [23] and MANTIS [24] are UNIX-like

operating systems for WSN nodes. Applications are written in standard C. Each

system provides a WSN networking stack with its own API. Because these follow

the UNIX programming model closely, developers should be able to get started and

write simple applications quickly. However, these operating systems do not support

as many hardware platforms as TinyOS and Contiki.

LiteOS [25] is another, more recent, operating system for WSNs. It is also a

UNIX-like operating system. A key component of LiteOS is a hierarchical file system

and wireless shell interface. This allows the user to access the motes in a familiar

way, without requiring any application logic to be implemented by the user. The goal

of these features is to get the WSN up and running quickly. Application software

can then be dynamically loaded onto the mote as needed. This built-in functionality

makes the mote look more and more like a general purpose computing platform,

however a price is paid for these features in terms of code size and complexity.

Table 2.1 summarizes the key features of several operating systems proposed for

WSNs. For comparison we also list the key features of µC/OS-II which is an operating

system commonly used for general embedded systems.

This investigation of WSN operating systems yields an interesting result. We

prefer a threaded execution model, which suggests MANTIS, Nano-RK, or µC/OS-
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Table 2.1: Survey of Operating Systems for Wireless Sensor Networks
TinyOS[19] Contiki[26] MANTIS[24] Nano-

RK[23]
µC/OS-
II[27]

Execution
Model

Event
(Threads
via add-on)

Event and
Protothreads

Threads Threads Threads

Real-time No No Yes Yes Yes
Power
Mgmt.

Application Application Scheduler Kernel Application

Networking Modular Modular Built-in Built-in Modular
Current
Version

2.1.1 2.2.2 1.0 beta pre 1.0 2.87

Supported
Platforms

8 >20 4 2 >100

ROM
(kB)

2.5 40 14 18 10
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II. However, MANTIS and Nano-RK are immature research grade operating systems

and µC/OS-II has no freely available networking support. TinyOS and Contiki have

seen wider use and offer more mature development environments. There are also

IP implementations available for both of these operating systems (see Chapter 2.3

for more details). Because of these two factors, TinyOS and Contiki are both good

choices for our research. The decision between the two is difficult, but as most WSN

researchers in the United States use TinyOS, we will also use TinyOS.

2.3 Networking Architectures

Chameleon [28] is a middleware for implementing networking protocols. Each

packet is described by a set of attributes and transformers do the work of taking

the attributes and creating a packet for the underlying network layer. This allows

network-centric applications written using Chameleon to be portable between various

network implementations. Additionally, one can utilize Chameleon to bridge two

different networks; such as the IP network and the sensor network. This solves the

mechanical problem of transporting packets between two different networks, but does

not provide an entire sensor networking platform for application developers.

Some may argue that the primary factor limiting progress in sensor networks is the

lack of an overall sensor network architecture [29, 30]. The fundamental components

of a WSN node are identified at the physical level as: sensing, energy storage, carrier

sense, transmit, and receive. Above the physical level is the data-link level containing:

media access, time stamping, coding, assembly, and acknowledgments. He proposed

the Sensornet Protocol (SP) to provide a common link-layer and below networking

abstraction. This is analogous to the IP layer in computer networks. Applications

would then be written for SP and therefore be portable from one physical medium to

another. There is no consideration or built in support for bridging the SP network

with the IP network. This is conceivable, however, the WSN node would then need

to implement the upper layers of the networking stack (application and transport) to
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be able to communicate with a standard PC. So as with Chameleon, this approach

only addresses part of the problem.

Another approach to build a WSN networking architecture is to simply implement

Internet style protocols on the sensor node. With this approach there is no need for

a complex gateway to convert packets from the IP network to the sensor network.

Removing the gateway node alleviates the problem of the gateway server failing and

causing the rest of the sensor network to fail as well. The trade off is a somewhat more

complex sensor node. In addition, the added processing that is usually necessary for

TCP/IP communications will increase the processing load on each node.

A well known solution for using IPv4 on sensor networks is the µIp [31] stack

included with the Contiki [26] operating system. Recently Contiki has also added

support for IPv6 sensor nodes [32] using 6lowpan. The 6lowpan project [33] from

the Internet Engineering Task Force aims to provide a standard way for sensor nodes

to transmit IPv6 packets. The Berkeley IP implementation for low power networks

(Blip) [34] is the TinyOS implementation of 6lowpan.

For future building energy monitoring and control application it is clear that open

standards, such as 6lowpan, will dominate. Building systems are heterogeneous in

nature and must interoperate. The pervasiveness of IP communication makes 6lowpan

the most logical choice. However, support for 6lowpan is still in its infancy and

implementations are evolving quickly. This creates practical challenges, for example,

our work in Chapter 4 was developed for Blip 1.x, which is incompatible with Blip

2.x. As a result, the work in Chapter 7 does not use Blip. The system presented in

this chapter can easily be adjusted to use a 6lowpan network layer when a mature

implementation becomes available.

2.4 High-Level Abstractions

The Tenet architecture [35] views large scale sensor networks as three tiers of

nodes. The highest tier consists of Internet connected users and the lowest tier are
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the motes. The middle tier manages nodes on the low level tier and translates data

between the upper and lower tier protocols. Tenet treats each mote as a general

purpose computing device. Before a node can do anything useful, it must first be

tasked by a high-level node. Each task is composed of an arbitrary number of tasklets

from a fixed tasklet library. Each sensor node executes its tasks in a virtual machine.

Agimone [36] is similar to Tenet in that it also bridges the sensor network with an

IP network. However, Agimone uses the idea of mobile agents rather than tasks. A

mobile agent is similar to a task that can move on its own from node to node in the

network. The agent must be initially inserted into the network by a high-level user.

This has the same effect as to treat each node in the network as a general purpose

computing platform where the agent implements the application specific logic.

Concierge [37] is a general purpose middleware for wireless sensor networks fol-

lowing the Open Service Gateway Initiative (OSGi) for resource constrained devices.

The OSGi framework is a component model enabling the dynamic deployment of

interconnected applications (called bundles). Much like the agent-based systems, ap-

plication bundles can be delivered to nodes over the wireless interface and managed

remotely. This could be utilized to implement distributed sensor network applica-

tions. However, the price for this flexibility and powerful features is paid for by high

minimum requirements. Concierge requires over 100 kB of RAM and a Java Virtual

Machine; neither of which is generally available on current sensor nodes.

Imagine linking large numbers of heterogeneous sensor networks together over the

Internet. This would create a Global Sensor Network (GSN) [38, 39]. To realize a

global sensor network we must standardize how information is presented and extracted

from the sensor network. The approach proposed in GSN uses a gateway node to

bridge the sensor network with the higher level network (Internet). In GSN the

gateway defines virtual sensors using XML configuration information. Each virtual

sensor can produce one or more data streams. A virtual sensor’s data stream can be

read directly by a high-level application, or used as input to another virtual sensor.
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Data is accessible to the high-level application by executing queries using a SQL-like

query language.

Microsoft also has a project to enable querying and visualization of large-scale sen-

sor networks called SenseWeb [40]. The heart of SenseWeb is centralized a database

server that is accessible through a Web Service API. Just as in GSN, a special gateway

collects sensor data and pushes the data to the SenseWeb database though a Web

Service. Once the data is incorporated into the central database it can be queried and

displayed using other APIs. One example monitors the SenseWeb database and plots

real-time data on an interactive map called SensorMap [41]. SensorMap provides a

simple and effective way to visualize the geographical relationship between different

sensors and their data. Because data is stored on a central server with it’s own APIs

an unlimited number of analysis and visualization applications could be constructed.

The Internet-scale Resource-Intensive Sensor Network Service (IrisNet) [42] is a

database-centric approach to large scale, Internet connected, sensor networks. IrisNet

focuses on high bit rate sensors, such as webcams. To join IrisNet an XML description

of the service is created and published in a distributed XML database. A high-level

API provides access to the distributed XML database for accessing each device. As

with SenseWeb there is no standard way for low level nodes to communicate; it

assumes they will all be Internet accessible and able to transmit and parse XML

documents.

These high-level abstractions can be separated into two groups where the first

three essentially deal with how to deploy application logic on the sensor network and

the last three deal with how to expose the sensor network to the Internet. For use

in building energy monitoring, any of these high-level abstractions could be applied.

However, we leave this integration for future work and focus our efforts on exploring

the lower-level support required by building energy monitoring and control.
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CHAPTER 3

CIRCUIT-LEVEL LOAD MONITORING FOR HOUSEHOLD ENERGY

MANAGEMENT

The first requirement for any intelligent household energy management system

is to be able to accurately measure energy usage in the home. Whole-home energy

measurement is cheap and easy to set up because only one sensor is placed where

the home connects to the power grid. The collected data can provide useful infor-

mation for large appliances. However, the only way to monitor the energy usage of

smaller devices is to install an energy meter on every device of interest. This cre-

ates a very detailed picture of household energy consumption, but requires a lot of

additional hardware – one meter per device in the home. This chapter explores an

alternative, more practical, approach to monitor household energy usage, including

small devices, by using circuit-level power measurements. We have developed and

evaluated two algorithms to disaggregate the circuit-level data into device-level esti-

mates. Our evaluation resulted in an average error less than 5.35% for each device in

the evaluation. We therefore believe that this approach enables the development of

highly intelligent automated energy management systems.

3.1 Chapter Overview

A reasonable perquisite to reducing energy consumption in buildings is a practical

method to monitor energy consumption in detail. There are two existing approaches

to household energy monitoring: 1) nonintrusive load monitoring (NILM) where

aggregate energy usage is measured by a single meter (e.g. a “smart meter”) as power

enters the home and 2) complex instrumentation systems where each device’s energy

consumption is individually metered. NILM is attractive because it is easy; only one

energy meter is required to monitor whole-house energy consumption. The whole-

house data is analyzed and step changes in power usage are matched to a database of
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loads (e.g. a 500 watt step might represent a refrigerator turning on). This approach

works remarkably well for large (over 150 watt) loads that operate as simple ON/OFF

devices or with very simple operating states such as high/medium/low [43]. Low

powered loads and those with a large number of device states, such as a dishwasher,

or continuously variable energy usage, such as an electric stove, are very difficult to

extract from whole-house measurements. The other approach is to measure separately

each load in the home [3, 6, 16, 44]. These approaches can provide very accurate data

for each device but would require a significant investment in equipment to monitor

every device in a home.

There is currently a renewed interest in understanding and reducing energy usage

in buildings. NILM was originally developed in the 1980’s at MIT by Fred Schweppe

and George Hart. In [43] an eight-step process for NILM is described. The steps are:

1) measure power and voltage, 2) normalize, 3) edge detection, 4) cluster analysis, 5)

build appliance model, 6) track behavior in terms of models, 7) tabulate statistics,

and 8) appliance naming.

Commercial interest in NILM is also growing as evidenced by the Google Pow-

erMeter [4] Project and a system developed by Greenbox [45], in addition to the

established NILM products from Enetics, Inc [46]. In each solution a smart meter

reports whole-home energy usage to a server for analysis. The information is pro-

cessed with a NILM algorithm and then presented to the user through a web-based

portal. The exact NILM approach taken by these companies is not publicly available.

In fact, exact statistics on the accuracy of most NILM system are scarce, however,

in [47] a three-home NILM system was studied and resulted in “75 percent to 90

percent of on/off events” being reported. In [43] “preliminary results suggest that

NILM usually reports energy consumption within ±10% of the independent sensors.”

In [48] three limiting assumptions are identified with the original NILM work: loads

are distinguishable, loads are steady-state, and data is batch-processed.
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In this chapter we describe two approaches for circuit-level non-intrusive load

monitoring that enable detailed and practical household energy monitoring. Both

approaches are modeled after the traditional NILM process. However, our first ap-

proach uses steady-state levels for disaggregation instead of state changes. Our second

method is a purely naive Bayesian approach that considers steady-state levels in ad-

dition to state changes. Both of these approaches address the limitations of previous

NILM algorithms by 1) considering steady-state power usage in addition to step

changes in stead-state power usage and 2) using circuit-level energy measurements.

Using the historical steady-state energy usage pattern for each device allows us to

more precisely classify each edge and eliminate some cases of indistinguishable step

changes. By measuring energy usage at the circuit level we can overcome the inability

of whole-house NILM to monitor small or variable power devices. This is because a)

there are fewer devices on each circuit, and b) high-powered devices (stove, hot water

heater, air conditioner, clothes dryer, etc) each receive dedicated circuits and will not

overshadow lower-powered devices (TV, radios, cell phone charger, etc).

Other researchers are also considering novel ways to extend the basic NILM pro-

cess. We view these approaches as complementary to ours – each approach extends

the capabilities of NILM in a unique way. The ViridiScope [49] couples whole-house

power measurements with indirect sensors in the home. The indirect sensors cap-

ture additional information (using magnetic, light, and acoustic sensors) that can

be use in the disaggregation process. For example, if a light sensor in the kitchen

detects an abrupt increase at the same time as the whole-house power consumption

increases, we can deduce that the kitchen light has turned on and the observed power

increase should be attributed to the kitchen light. Another idea is to detect transient

noise caused by devices turning on or off [50]. In this case high frequency sampling

is required (100 Hz - 100 MHz) and devices are recognized by their spectral finger-

print. Although both of these approaches are promising, no single approach has yet
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been shown to be universally effective (including our own). It is likely that the most

effective systems will incorporate ideas from each of these works.

Our long-term goal is the development of a complete household energy manage-

ment system that integrates both measurement and control functions. For meaningful

control, the obvious requirement is to integrate an AC-line switch; however, we be-

lieve control of every device is neither practical nor cost-effective. For example, the

current EnergyStar criteria for televisions (Version 4.0, effective May 1, 2010) re-

quire that they draw no more than 1 watt in Sleep mode [51]. Actively disabling

an EnergyStar-compliant television would yield very modest energy savings, unlike

with older televisions, the most egregious of which can draw 10-20 watts in the Off

mode. We believe that the energy management system could use circuit-level NILM

to identify those devices which should be controlled in order to maximize efficiency

while minimizing cost. In addition, if the AC-line switch also included energy moni-

toring, we could use this data to effectively remove those devices from the unknown

aggregate measurements increasing the accuracy on the remaining devices.

3.2 Heuristic Approach to NILM

This approach builds on the basic ideas in the original NILM work, but addresses

its weaknesses through several steps to enable more complete device-level energy

monitoring. First, we use circuit-level energy measurements. This greatly simplifies

the analysis. Because there are only a handful of devices on each circuit, we expect

a lower occurrence of indistinguishable devices. Second, our approach uses a prob-

abilistic level-based disaggregation algorithm rather than an edge-based algorithm.

Because this algorithm does not require a step change in energy usage to identify

devices, we are better able to monitor devices with complex state or continuously

variable power usage. While the level-based approach may not perform well with

whole-home energy measurements, it is effective here because of the reduced number

of devices contained in each circuit-level energy measurement. Training can be done
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Figure 3.1: Heuristic NILM algorithm.

by monitoring the use of each device as the user turns it on and off or it could be

automated by using a control system to switch individual devices and measure the

effect on power usage. Both proposed training methods are autonomous and generate

samples of each individual device’s power usage.

Figure 3.1 shows the steps in our NILM algorithm for circuit-level measurements.

Step (1): Training (Figure 3.1(a)) and processing (Figure 3.1(b)) both begin by mea-

suring the real (P ) and reactive (Q) power, line voltage and frequency once per second.

The sampling rate used is the fastest supported by our energy meter [52]. Step (2):

The power measurements are normalized to a 120V line voltage as in [43]. Step (3):

Construct a 2-dimensional histogram of the measured power for each device in P −Q

space collected during the training period. Step (4): Identify clusters that correspond

to the different states of the device. Our clustering approach uses thinning of the his-

togram to compute the location and number of clusters. The thinning process first

discards outliers with less than 0.1 percent of the data. The next step is to find local

peaks, where all the adjacent cells have lower value. It then increases the value of the

peak while decreasing the value of the neighboring cells. The peak-thinning process

repeats until every neighboring cell of the local peak has neighbors that are all zero.

The number of peaks determines the number of states, K. The (non-thinned) his-
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togram value at each peak is the height of the peak. To classify a point we compute

the cost to move in a straight line from the unknown point in P − Q space to each

peak in the histogram. The cost is the sum of the steps needed to reach the peak.

If the height decreases we know there is a different peak that is closer, so we can

eliminate the current class as a solution. If we reach a point with zero height we

immediately disregard that peak. The lowest cost solution determines which cluster

the unknown point belongs to and if there are no peaks reachable from the current

location, the point does not belong to any of the device’s classes. In this way changes

in both P and Q are treated equally. Step (5): Classify each cell of the histogram

and compute the probability mass function (pmf) for each of the K classes. The pmf

has the same dimensions as the histogram and represents the probability of being in

that cell conditioned on the device being in the state identified by the classifier. The

pmf is used in the merge process (next) to compute the maximum likelihood merged

classifier. Step (6): The merging process creates a classifier by computing all possible

combinations of individual device states and their probability. When there is overlap

in the merged classifier, the set of classes that maximizes the joint probability is used.

One thing to note is that the merged classifier appears blurred when compared to

the individual classifiers. This is due to quantization error in the combined measure-

ments. For example, if we have two classifiers with a 1 watt2 cell size the points in

the rectangle with corners at (0, 0) and (1, 1) are placed in the first histogram cell.

When we merge the classifier we must account for the fact that this range of values

is possible, so the resulting merged range includes the four cells contained by the

rectangle with corners at (0, 0), (2, 2).

After the combined classifier is created, we can use it to decompose the circuit-

level energy measurement into device-level energy estimates using the process shown

in Figure 3.1(b). After measuring and normalizing the power data the next step is

to use the combined classifier to classify the most likely state for each device (Step
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Figure 3.2: Training data for a low-power PC (collected over several hours).

3). Next, we go back to the individual devices’ histograms and find the most likely

energy usage of each individual device that results in the same total energy as was

measured (Step 4). The result is limited to the resolution of the histograms, so we

linearly smooth the result so that the sum equals the measured value (Step 5).

Working Through an Example

The measurements and computational steps in creating a classifier for a PC are

shown in Figure 3.2. Figure 3.2(a) shows the raw power data plotted in P −Q space.

The few samples between the two clusters represent the transient created by switching

between standby and active mode. The outlier detection step in the thinning process

successfully identified and removed these samples. Figure 3.2(b) shows the histogram

of the raw data using a bin size of 1 watt in each dimension. The histogram is then

thinned to determine the number of device states. Figure 3.2(c) shows the computed

peaks where each peak represents the most likely measurement in each state. This
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process is repeated for each device of interest and then each maximum likelihood

classifier is computed.

The output of the classifier can now be used to determine which state the device

is in. Once the state is known the original histogram is used as an estimate of

the pmf within each state. We could use the histogram as an estimate of the pmf

without constraining the state, however this would bias the estimate to favor the

most common state thus make uncommon states highly unlikely. The next step is to

generate a classifier for each device of interest and then combine them into a single

classifier for the combined energy consumption. This is done by computing every

possible combination of each device. The resulting power is summed and the pmf for

each device is used to compute the joint probability of the combined solution. The

set of classes that maximize the joint probability is saved as the final classification

for each cell in the combined classifier.

3.3 Bayesian Approach to NILM

The heuristic method of NILM uses probability estimates based on training data

and combines them to disaggregate data. This approach has elements of Bayesian

probability. To better understand how this process works we have developed a for-

malizable purely Bayesian approach. This approach uses a naive Bayes classifier to

compute the most likely state of each individual device given a measured aggregate

total and detected state change. Our approach is naive because we assume the state of

each device is completely independent of the other devices. This is a fair assumption

in general; however, for certain devices like a TV and DVD player their operation

would be highly correlated. In this approach we use the measured real power, P , as

the sole input. This was motivated by the desire to independently train devices and

then later combine them. Because the reactive power, Q, does not combine linearly,

we cannot train each device independently. This results in less information, there-
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fore, to compensate we have added steady-state changes as an additional source of

information.

S = {D1 = s1, ..., Dn = sN} (3.1)

To formalize the problem we first define the disaggregated state, S, as in Equation

3.1. Here S is the set of states for each individual device (Dn) where each device is

in some known state (sN). To avoid manually labeling each state, we represent each

state as the steady-state power rounded to the nearest 1 watt. Then we let Ω be the

state space consisting of all valid states. To disaggregate a power measurement, p,

with detected steady state change (edge), e, the problem we must solve is shown in

Equation 3.2.

arg max
S∈Ω

Pr

(
S|

N∑
n=1

Dn = p
⋂

E = e

)
(3.2)

Now we apply Bayes’ theorem to this probability.

Pr

(
S|

N∑
n=1

Dn = p
⋂

E = e

)
=
Pr(

∑N
n=1Dn = p

⋂
E = e)|S)Pr(S)

Pr(
∑N

n=1Dn = p
⋂
E = e)

(3.3)

We can then apply the fact that
∑N

n=1 Dn = p to constrain the search space.

Accordingly, this term then is simply 1 and can be eliminated, so the problem to be

solved can be re-written as follows.

arg max
S∈Ω:

∑N
n=1 Dn=p

Pr(E = e|S)Pr(S)

Pr(E = e)
(3.4)

We compute these probabilities to find the most likely solution. Since the de-

nominator does not depend on S, it can be removed since it is common to all terms;

leaving the final classification problem as:

arg max
S∈Ω:

∑N
n=1 Dn=p

Pr(E = e|S)Pr(S) (3.5)

These two terms can be independently computed from training data. We con-

sider the second term, Pr(S), first because this is simply the observed probability of

being in a particular state S. Because S actually represents the particular state for

each device as S = {D1 = s1, ..., Dn = sN} where we have devices 1..N , and each

device is independent, we can compute this as a product of each device separately
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as
∏N

n=1 Pr(Dn = sn). The first term, Pr(E = e|S), is the probability of seeing a

steady-state change (or edge) of size e and ending up in state S.

If we assume that only one device is changing at a time, Pr(E = e|S) is the

probability that a single device has changed state by e to end up in S. This probability

can be calculated from the training data by looking at the number of occurrences that

a change of e ended up in S relative to all changes that ended in S. Let Es be the

set of edges in the training data that resulted in state s. Let I be a function that

returns one if a condition is true, and zero otherwise. Pr(E = e|S) under this set of

assumptions can then be formalized as:

Pr(E = e|S) =

∑
i∈ES

I(e = i)∑
i∈ES

1
(3.6)

This analysis shows that in both cases we may train the classifier independently

on each device and then use the trained classifiers together to disaggregate a set of

devices. This makes it possible to create a database of known devices and then select

the particular subset contained in the aggregate measurement of interest.

While not the core topic of this work, we can consider relaxing the assumption

that only one device is changing at a time. Let us define a state transition as:

T = {t1, t2, ..., tN} (3.7)

Here T is a transition consisting of the set of power transitions for each of the N

devices. In the case of a single device, i changing state only one ti would be nonzero.

The magnitude of an edge defined by a particular transition T would be represented

as:

eT =
N∑
i=1

ti (3.8)

To find the probability Pr(E = e|S), we would find all transitions with an edge of

e. For each transition, we would then want to find the probability that that transition

resulted in S. Since we trained each device individually, we do not have data on the

probability of a transition. Assuming device independence, we can construct the

probability of a transition by considering all non-zero device state changes that add
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up to e. For example, if T had two nonzero device state changes a and b, with power

changes ea and eb, we could find the probability of TS as:

Pr(T |S) = Pr(a|S) · Pr(b|S − ea) + Pr(b|S) · Pr(a|S − eb) (3.9)

This is not commutative as S − ea is not necessarily S − eb. For the generic case,

we must consider every ordering of the individual device transitions of that transition.

In other words, if a transition has n nonzero transitions, then there are n! orderings

that must be considered.

The exhaustive approach to do this while still being able to train the devices in-

dependently requires significant computation. Specifically, finding every combination

of transition that has a magnitude of e would need to be found. In the simplest

case, the transition for a specific device would have only three possible values: turn-

ing on (positive), staying on or off (zero), or turning off (negative). Reducing the

problem further to only consider transitions of either turning on, or retaining state,

this problem effectively is the subset-sum problem, a known NP Complete problem.

As solving this problem would also solve the subset-sum problem, this problem is

NP hard. Adding additional transitions per device and adding combinatorics of the

devices, this problem will have a worse complexity than just the subset-sum problem.

Hence, for anything but a small number of devices that change state, this approach

is not tractable. A case might be made for trying both assumptions of two state

changes rather than just one, but the generic case is computationally prohibitive.

Working Through an Example

To illustrate the process where we estimate Pr(S) and Pr(E = e|S) we imagine a

three-way light bulb. A three-way bulb has two filaments and operates by turning on

one filament, the other, and then both. This device has four states: off, low, medium,

and high. There may also be a very brief time between two states where the light is

actually off. However, because we sample power relatively slowly, this brief off period

is not measured. For a 30-50-80 watt light bulb the measured power and edges are
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Figure 3.3: Sample 30-50-80 watt light bulb measurements.

shown in Figure 3.3. In this trace the light is in each of the four states for an equal

amount of time.

To estimate Pr(S) we construct a histogram of the instantaneous power samples.

Because the device spent an equal amount of time in each measured power state: 0,

30, 50, and 80 watts, the estimated probability of being in any one state is 1
4
.

To estimate Pr(E = e|S) we need to compute a probability estimate for all

observed state changes (edges) eM . Because this is conditioned on a particular device

state, S, we now compute a histogram for each device state. There were 4 edges

detected and 4 distinct steady-state states. In this case the probability is 1 for each

edge, because we only observed one distinct edge for each steady-state value. For

example, the only edge that resulted in the 50 W state was the +20 W edge. There

were two +30 W edges, but they resulted in two distinct states, 30 W and 80 W. The

final edge is -80 W which ended in state 0 W.

In this example we used a device with obvious states and transitions and used a

very precise training procedure. With more complex devices this is not possible and
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not necessary for this process to work properly. If we monitor a PC, for example, we

see a wide variation over a 10 watt range. This is due to the changing power states

of the various peripherals and the changing power requirements of the CPU itself.

These complex interactions are difficult to fully understand and control for training

purposes. As long as the training period is sufficient to provide a statistically accurate

device usage pattern that covers all possible device states, this approach will work.

The final algorithm is shown in Figure 3.4. Both training and processing begin by

measuring the aggregate or device-level power. We sample the power at 1 Hz, but it

is possible to miss some samples. To correct this problem we use linear interpolation

to estimate missing samples. The data is then passed through a low-pass filter to

remove high frequency noise. In the training process we then generate a histogram

of the power samples using a 1 watt histogram bin. This generates an estimate of

the probability density function (pdf) for the device’s instantaneous power usage. A

histogram is generated for each possible state change in the power measurements.

For each detected edge we store the resulting power level for the device. This result

allows us to estimate the probability of the device switching into a given power level

conditioned on observing a particular edge.

3.4 Evaluation

To explore our approach for circuit-level non-intrusive load monitoring we have

conducted several experiments. In each case we use the commercially available power

meter called the WattNote from Continental Control Systems, LLC. Each WattNode

measures power, voltage, and frequency once per second with ±1.0% accuracy. One

WattNode acts as the circuit-level power meter monitoring the aggregate usage of the

three devices under test. Each device is then individually monitored by another

WattNode. The power used by the WattNodes (< 2 W) is not included in the

measured values. These evaluations demonstrate that both of our NILM algorithms

are able to disaggregate small (10 W - 30 W) devices using circuit-level measurements.
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(a) Training (b) Processing

Figure 3.4: Bayesian NILM algorithm.

This is a significant improvement over existing approaches that only detect devices

> 150 W.

Experiment 1 - Long Term Stability

In this experiment we monitor a PC, LCD, and desk lamp for a 24-hour period

to evaluate the long-term reliability of each approach under stable conditions. Each

device was on for the entire experiment however, we used a random screensaver on

the PC. As the name implies the random screensaver selects a screensaver randomly

and after a random delay chooses another screensaver. This causes the CPU load to

vary from 0 to 50% and the measured power to vary by more than 10 watts. The LCD

and lamp show fairly constant power consumption. Because the PC oscillates between

many similar states it is more difficult to properly disaggregate than a device with

large step changes such as a refrigerator. We use the first two hours of the 24-hour

trace for training (and exclude these data from the evaluation). Figure 3.5 shows the

measured power for each device. The results from heuristic approach are shown in

Figure 3.6 and the Bayesian approach in Figure 3.7.

We use the true device-level power measurements to compute the error of the dis-

aggregation for each method. We see that both methods achieved very good accuracy
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Figure 3.5: Measured power for a 24-hour period.
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Figure 3.6: Heuristic disaggregation for the same 24-hour period.
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Figure 3.7: Bayesian disaggregation for the same 24-hour period.

over the entire experiment; much better than the ±10% error cited by previous NILM

approaches. Overall the Bayesian approach was superior. Because the heuristic ap-

proach did not consider edges, it had some difficulty distinguishing between the PC

at high power and the lamp off and the PC at low power and the lamp on. In both

cases the cumulative power used by these two devices was about 44 W. In this case

the state-change information was sufficient to disaggregate these two states. The re-

sulting error rates are shown in Table 3.1, illustrating that circuit-level NILM is able

to successfully disaggregate small steady-state loads with high accuracy.

Experiment 2 - Changing States

It is also important to accurately detect and classify devices as they change state.

We have previously seen good results with the heuristic approach under changing

device states [53] (results summarized in Table 3.1), so we now focus on evaluating

the Bayesian approach under changing device states. We replaced the PC from the

previous example with a 3-speed fan to increase the number of distinct device states.

We collected 6 minutes of training data (Figure 3.8) where we manually cycled each
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device through all possible operating modes. Some challenging features in this data

are that the LCD in the active state is nearly identical to the fan on low speed.

Additionally, when the LCD transitions from active to standby generate transients

similar to the lamp turning off or on. As a result in this data neither the steady-state

values or state changes alone are sufficient for disaggregation.
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Figure 3.8: Training data for each device.

We then collected data for a one-hour period where we manually changed device

states in a different order than was used in collecting the training data. The mea-

sured powers and the output of the Bayesian algorithm are shown in Figure 3.9. The

experiment started with the LCD in standby and the fan and lamp off. Here we

see a small error because the total energy consumption of 1 watt is below our me-

ter’s creep limit (the minimum nonzero power). This experiment demonstrates that

device state changes are quickly and accurately detected from the circuit-level aggre-

gate measurements. The resulting error rates this experiment is also summarized in

Table 3.1.

Table 3.1: Experimental error rates.
Long Term Stability Changing States
Heuristic Bayesian Heuristic Bayesian

PC/Fan 0.13% -0.67% -0.69% 0.74%
LCD 3.10% 0.79% 1.13% -2.31%
Lamp -5.35% 2.91% 1.72% 0.73%
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Figure 3.9: Measured and estimated power for each device.

3.5 Chapter Summary

These results are promising; using circuit-level energy measurements we can dis-

aggregate energy usage by low-powered devices. Numerous studies have shown that

household energy consumption can be lowered by simply providing real-time aggre-

gate energy usage information [54], we believe that device-level energy information

will provide additional useful information allowing occupants to identify wasteful de-

vices and further reduce their consumption. This work represents a small step toward

a long-term goal where energy saving behaviors are automated so that the building

itself would detect wasteful or unnecessary devices and then disable them based on

the sensed occupant behavior.
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CHAPTER 4

PIM-WSN: EFFICIENT MULTICAST FOR IPV6 WIRELESS SENSOR

NETWORKS

Wireless building energy monitoring and control systems require the robust and

efficient communication of sensor data. To provide this, we have developed PIM-

WSN, a protocol independent multicast (PIM) protocol tailored for IPv6 wireless

sensor networks (WSNs). Multicast IP communication is useful for communicating

building sensor data because it eases the task of delivering sensor data to other nodes

in the network. Existing solutions for multicast in WSNs are limited because they

either support multicast only from a single source node (usually the root node) or

they limit the multicast group size to constrain memory usage. Our design allows

any node to be a mulitcast source with an unlimited number of subscribers. We

constrain the memory usage by approximating multicast group membership using a

fixed sized Bloom filter. The efficiency of the protocol degrades as the false positive

rate of the Bloom filter increases; however, correct operation is always maintained.

Using detailed simulations we show that PIM-WSN achieves 1) high packet delivery

rate (over 97%), 2) low latency per hop (less than 5 ms), and 3) lower radio utilization

than all other comparable protocols (by more than 50%). Using a ten-hop testbed of

TelosB motes we have verified our implementation of PIM-WSN for TinyOS 2.x with

the Blip IPv6 networking stack which uses only 5,978 bytes of ROM and 235 bytes

of RAM.

4.1 Chapter Overview

Sensor network applications are increasingly being developed that not only pas-

sively sense the physical environment but also actively interact with it. In order

for this interaction to be more responsive, intuitive, and scalable a distributed ap-

proach is essential. Multicast communication is useful for this application because it
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allows sensed data to be transmitted directly to multiple receiving nodes. Multicast

is heavily studied in IP-based networks, while multicast in wireless sensor networks

(WSNs) has focused on specialized protocols with limited functionality (e.g. [55–60]).

These limitations constrain the number of nodes in the multicast and which nodes

can source multicast traffic to ease implementation on resource constrained sensor

nodes. Support is growing for IPv6/6lowpan support in WSNs, however, current

implementations do not provide support for multicast. This is because no existing

WSN multicast implementations provide the broad support needed for general pur-

pose multicast. Our contribution is a general purpose multicast protocol able to

provide multicast for emerging IPv6/6lowpan WSN solutions.

The most common form of multicast is Protocol Independent Multicast (PIM).

“Protocol independent” refers to the fact that the it relies on the underlying network

routing protocol, rather than implementing its own routing protocol [61]. This is a

good match for sensor networks because many routing protocols already exist that

have been validated and tuned for a certain application or network topologies. We

elect to follow the same, protocol independent, approach for our multicast design and

implementation.

In this chapter, we design, implement, and evaluate PIM-WSN, a protocol in-

dependent multicast protocol customized for WSNs. The distinguishing features of

PIM-WSN are:

• Unlimited number of source and subscriber nodes

• Constant memory usage

• Reliable multicast packet delivery

• No periodic messaging or route maintenance

Through extensive performance studies using carefully designed simulations we

demonstrate that PIM-WSN delivers packet delivery comparable to other multicast
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approaches (over 95%), low latency (under 5 ms), and significantly outperforms the

three other protocols we tested in terms of radio utilization (by more than 50%). We

have also implemented and verified PIM-WSN using TinyOS 2.x with the Blip IPv6

networking stack [34]; our implementation requires only 5,978 bytes of ROM and 235

bytes of RAM on the TelosB platform.

4.2 Related Work

Numerous multicast protocols have been proposed for wireless sensor networks.

Existing approaches can be classified as: adaptations of mobile ad-hoc network

(MANET) protocols, WSN-specific, or geographic. We will not consider geographic

protocols (such as [57, 59]) because they rely on extra information (geographic) that

we do not. In fact, PIM-WSN used in conjunction with a geographic routing protocol,

would effectively create a geographic multicast. We also do not consider the numerous

adaptations of link-state protocols (such as OSPF, OLSR, and FRM [62–64]) because

this routing paradigm is generally not supported in WSNs.

THe MANET multicast routing protocol Adaptive Demand-driven Multicast Rout-

ing (ADMR) has been evaluated for use in wirless sensor networks [55]. The main

problem with this (and other) MANET routing protocols is they require storing state

for up to every node in the network. In a WSN nodes cannot store this much state

information, so the authors explored various policies to reduce memory usage by prun-

ing low quality paths. However, it is not clear if this could result in a disconnection

of the multicast. Our solution to this problem may deliver packets to extra nodes

but does ensure no node is disconnected (if a path exists). Exploring other MANET

multicast protocols does not look like a promising approach. A study of four other

common MANET multicast protocols found that they all depend on frequent periodic

messaging to maintain multicast routes and do not take any steps to limit memory

usage [65]. Both of these issues must be resolved to be useful in WSNs where periodic

messaging consumes too much energy and memory is constrained.
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This leaves WSN-specific multicast protocols. A good theoretical analysis of the

problem is presented in [56], however, the evaluation is purely theoretical. One of the

earliest implementations of multicast in WSNs we found was presented in [60]. This

approach bypasses the memory problem by only supporting base to node multicast

(not peer to peer) with 8-bit node identifiers. This limits the maximum multicast

state, so that even in the worse case, it would fit into a node’s constrained memory.

In addition, the protocol itself is a standard multicast approach, requiring periodic

subscriptions to avoid expiring nodes.

Branch aggregation multicast (BAM) [58] is the only prior work that also uses the

protocol independent approach in WSNs. BAM relies on metrics from the routing

layer to choose next hop destinations. The significant difference between BAM and

PIM-WSN is that BAM appends multicast subscription information to every data

packet. This avoids the overhead of sending join messages and storing forwarding

information on each node, while increasing the overhead of sending each data packet.

This works with short network addressing schemes and a few subscribers, but will

not scale well to IPv6 address and more than a handful of subscribers.

4.3 Design of PIM-WSN

Our goal is to keep the protocol as lightweight as possible while balancing memory

efficiency, energy efficiency, reliable packet delivery, and low latency. We will first

give an overview of PIM-WSN and then describe in more detail how we address the

problems that are specific to tailoring PIM-SSM for WSNs.

In PIM-WSN an interested node initiates the multicast data transfer the same

way as PIM-SSM, i.e., by sending a unicast join message to the source node of the

multicast containing the source-group pair (S,G). This message is sent using any

available unicast routing protocol. When a source node receives a valid join message it

responds with a join acknowledgment unicast back to the subscriber. The destination

node continues sending join messages until it receives a join acknowledgment or the

38



I

A

D

N

(a) A joins N’s multicast

E

A

J

D

N

(b) N acknowledges A’s join message

Figure 4.1: PIM-WSN subscription process. Join and join acknowledgement mes-
sages may take different paths (as shown). Data flows along the path of the join
acknowledgement.

subscription fails after making a maximum number of attempts. After the node

receives a join acknowledgment it is now a subscriber to the specified multicast and

multicast data will be delivered. The subscriber does not need to send any more join

messages for this multicast (S,G) unless a failure is detected.

The subscription process also serves to inform nodes along the path from the source

to subscriber that they must forward packets. This is done by nodes overhearing the

join acknowledgment message. The multicast source and every node on the path to

the unicast destination of the join acknowledgment store the address of the next hop

towards the destination. These nodes are considered subscribers to the multicast

(S,G). This information is later used to forward multicast data packets sent from

that (S,G).

Figure 4.1 illustrates node A joining node N’s multicast. Arrows indicate the

unicast join and join acknowledgement messages. Each node along the path of the join

acknowledgement (D, E, and J) updates their local subscription list. For example,

node E stores that it must forward multicast packets from N to D. Node D then

forwards N’s multicast packets to node A. If multiple nodes subscribe to N’s multicast,

paths to each subscriber are created using the same process. Only one packet is

transfered along paths shared by multiple subscribers.
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PIM-SSM was designed with wired networks in mind and customizing it for WSN

presents several interesting challenges. Three main problems arise with a naive PIM-

SSM implementation for WSN. 1) memory usage: storing all the subscription data

for each multicast is not possible for a resource constrained devices. 2) reliability:

wireless communication is notoriously unreliable; “best effort” delivery works well

in wired networks, however, it does not perform well on wireless links. 3) periodic

signaling: PIM-SSM keeps forwarding route up to date by each node repeating the

subscription process periodically. However, many WSN applications have very low

data rates where periodic signaling could dominate energy consumption. Next we

illustrate how each of these three issues are addressed in PIM-WSN.

4.3.1 Limiting Memory Usage

We must store subscription data at each forwarding node. Specifically, the triple

(Dn, S,G) should be stored at each forwarding node n, where Dn is the next-hop des-

tination of the join acknowledgment message along the path from the source to sub-

scriber (S) of mulitcast (group) (G). If we store all the subscription data, the memory

usage will quickly exceed the limited storage capacity of resource constrained sensor

nodes. On the TelosB storing 213 uncompressed IPv6-style tuples would consume all

of the TelosB’s memory. This is clearly not an effective approach. Our solution is

to use a fixed-sized counting Bloom filter as an improvement to the standard Bloom

filters used in [64] to store subscription information.

Because Bloom filters are a probabilistic data structure false-positive results are

possible (but not false-negative). As the number of subscribers increases, the false-

positive rate also increases. In PIM-WSN, a Bloom filter false positive could result

in forwarding multicast data to a node that is not actually subscribed to the multi-

cast. As a result, the efficiency of the protocol is affected. The functionality is still

correct because all nodes that are subscribed still receive data. Nodes incorrectly

receiving multicast packets can simply drop them. We believe this is a much better
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solution than dropping a node from the multicast when memory is exceeded as in

other multicast implementations (e.g., [55]).

The counting Bloom filter has three parameters: counter size, number of hash

functions, and number of counters. The counter size must be set so that a node is

removed after a predetermined number of failures; we use two. If each failure decre-

ments the size by 1, the subscription process must set the initial value to 2. Therefore,

we must allocate at least 2 bits per counter. However, to avoid unintentionally remov-

ing other nodes that may share common hash values, we should increase this value.

Using a counter size on even powers of 2 simplifies the implementation; as a result

we use 4-bit counters.

The remaining parameters can be optimized to achieve a certain false-positive

rate. Equation (4.1) gives the ideal false-positive rate (Pfp) of a Bloom filter as a

function of the number of items to be stored in the filter (n), the number of hash

functions (k), and the number of counters (m). For a given m and n, the value of k

that minimizes Pfp is given by Equation (4.2).

Pfp =

(
1−

(
1− 1

m

)kn
)k

(4.1)

k =
m

n
ln 2 (4.2)

In PIM-WSN each inserted item is the subscriber triple (Dn, S,G). However,

these parameters are application, topology, routing dependent and they are also time

varying, so choosing optimized values is nearly impossible. To achieve a constant

false-positive rate Bloom filters scale linearly with the number of inserted items.

Therefore, memory usage in PIM-WSN also scales linearly with the number of mul-

ticast subscribers when the false-positive rate is constrained. However, by allowing

the false-positive rate to vary, PIM-WSN achieves the desirable property of constant

constant memory usage, even as the number of subscribers increase. Figure 4.2 shows

the required number of counters per multicast to achieve a given Pfp assuming the
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Figure 4.2: The required number of counters per item (multicast) to achieve a given
false-positive rate

ideal selection of k. Given that we use 4-bit counters, this translates to a range of 1-5

bytes per multicast to achieve Pfp<0.4. The primary advantage of PIM-WSN how-

ever, is that we can design the filter for a typical application and the functionality

will remain correct even as the false-positive rate varies.

Chapter 4.4.1 explains the values used for our experiments in more detail.

4.3.2 Improving Reliability

PIM-WSN uses one-hop broadcast messages to transfer data to all neighboring

nodes at the same time. Common link-layer reliability mechanisms (acknowledg-

ments) cannot be applied to broadcast traffic. Branch aggregation multicast (BAM)

[58] also uses one-hop broadcast messages where all neighbor nodes acknowledge the

packet. This provides good reliability at the expense of increased energy consump-

tion and congestion. Congestion can be reduced by using delayed acknowledgments,

however, this increases latency. Robust broadcast propagation (RBP) [66] proposes
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a probabilistic method to achieve reliable broadcasts where a fraction of neighbor-

ing nodes is dynamically computed and if at least these many acknowledgments are

received the packet is considered to be delivered to all nodes. This improves perfor-

mance, but still requires every node to transmit an acknowledgement to every packet,

resulting in high energy usage and congestion. Our alternative approach is to have

the sender designate a single node to acknowledge the one-hop broadcast packet.

The address of the designated node is included in the packet header. The result is

improved reliability while reducing energy consumption, congestion, and latency.

When a node receives a multicast data packet, it must check if it is designated

to acknowledge the transmission. There are two well known ways for a node to

acknowledge a data packet: implicitly and explicitly. For improved efficiency, PIM-

WSN supports both methods of acknowledgment. The implicit mode is used when

the designated node must itself forward the packet; the act of forwarding a multi-

cast data packet acts as an acknowledgment. If a forwarder that is waiting for an

acknowledgment receives the same data packet from the node designated to provide

the acknowledgment, it knows the packet has been received and may stop retransmit-

ting. There is of course no guarantee the original sender will hear the message being

forwarded. So, the original forwarder will retransmit the packet with the same desig-

nated node. Whenever a node receives a duplicate data packet and it is the designated

acknowledgment node, it will send an explicit acknowledgment to the sender.

4.3.3 Eliminating Periodic Messaging

Proactive route maintenance is used in PIM-SSM to keep forwarding routes up

to date. However, if data is sent infrequently, maintaining the forwarding state can

dominate energy consumption. Because low data-rate applications are common in

WSNs, we instead reactively update multicast routes. If a multicast delivery fail-

ure is detected (which is possible because there is a reliability mechanism), we then

notify subscribing nodes that a rejoin is necessary. A rejoin is accomplished by the
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subscribed nodes on failed forwarding paths rejoining the multicast. This process

creates new forwarding paths using current routing information.

A rejoin is triggered after a packet is retransmitted a maximum number of times.

To signal this event, the multicast data message is encapsulated in a unicast packed

and then sequentially unicast to each subscribed neighbor node. This relies on the

unicast routing protocol to route the message (possibly over multiple hops) to the

destination node(s). The counting Bloom filter is then decremented on the forwarding

node for each (Dn, S,G) triple so that after several failures the node will be removed

from the filter. If a node receives a unicast encapsulated multicast packet it assumes

there was a delivery failure and repeats the subscription process. If a node receives a

unicast data message and it is also a forwarding node it resumes multicast forwarding

and follows the usual procedure using one-hop broadcast messages. This localizes the

failure to only the effected link, improving efficiency.

In our evaluation we do not send periodic join messages and rely entirely on fault

detection. However, it is possible that the unicast data messages may also be lost. For

example, if a node became disconnected from the network for an extended period of

time. To ensure the correct operation of PIM-WSN it is necessary to detect network

disconnect/reconnect events and resubscribe to every multicast.

4.4 Performance Evaluation via Simulation

Our goal is to evaluate PIM-WSN under real world conditions, which are hard

to replicate using traditional network simulators like TOSSIM, OmNet++, and ns2.

Therefore, we use connectivity traces from real wireless sensor network deployments.

Because real network traces are used they inherently contain real-world packet loss

and noise. Our simulator, WsnSimPy, is a trace-based simulation tool built on the

discrete event simulator SimPy1. For validation of the simulation tool, we direct

readers to our previous work [67].

1http://simpy.sourceforge.net/
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The connectivity traces are from the “soda” dataset, collected by Ortiz and Culler

in a UC Berkeley office space2. They were obtained as follows. 46 IEEE802.15.4-

compliant TelosB motes are deployed in a 50m x 50m indoor environment, and are

constantly listening for packets. One after the other, each mote transmits a burst of

100 packets with a 20 ms inter-packet time and a transmission power of 0 dBm on

each of the 16 frequency channels. Timers are used to ensure that all nodes switch

channels simultaneously.

4.4.1 PIM-WSN Setup

There are several questions about PIM-WSN that we must now answer. They are:

1) How is the designated acknowledgment node selected? 2) When is a link failure

assumed? 3) How is the bloom filter configured? First, we use the weakest link

acknowledgment policy. The subscribing node with the worst routing metric (but not

worse than a preset threshold) is designated to provide the acknowledgment. Second,

we assume a link failure after a multicast packet is transmitted four times without

acknowledgment. The rationale to use a relatively low value here is to avoid multicast

forwarding paths with poor links. This is useful in our simulation because the network

is well connected; i.e. removing links with ETX > 4 still results in a well connected

network. In sparse deployments, this might generate excessive subscription traffic if

the only available links have ETX > 4. In general we could dynamically assign this

threshold based on local network conditions.

Third, we must define the parameters for the Bloom filter used to hold subscrip-

tion information. Selection of filter size is application specific because it should be

large enough to achieve low false-positives with the expected number of multicast

subscribers. For our evaluation we set the filter size to achieve good performance

with each node subscribing to one multicast. Our simulation has 43 nodes; therefore,

we want a low false positive rate after 43 insertions. Solving for the Bloom filter false

2http://wsn.eecs.berkeley.edu/connectivity/
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positive rate, Pfp = 0.1 with n=43, yields m=206 and k=3 (rounded to the nearest

integer). Each counter is 4-bits, so the total memory requirement is 103 octets. This

is an awkward size to use in practice so we round down to the nearest word-aligned

value and use a fixed-sized Bloom filter of 96 octets.

4.4.2 Simulation Results

For each simulation run we fix the number of source nodes and number of sub-

scribers per source. Each run is assigned a unique value to seed the simulator’s

random number generator (Mersenne twister [68]). Source nodes are selected ran-

domly without replacement. Subscriber nodes are selected independently for each

source without replacement. This does not prohibit a node from being a subscriber

to multiple (different) multicasts, or a source of one multicast being a subscriber to

one or more other multicasts.

The performance of PIM-WSN is benchmarked against branch aggregation mul-

ticast (BAM), simple flooding, and sequential unicast communication. BAM was

selected because it is the only other protocol independent multicast approach im-

plemented in WSNs. In addition BAM uses optimized multicast delivery trees and

claims to be “very energy efficient.” Flooding has the advantage of no setup costs

and optimal routing (all routes are used, therefore the optimal route must be used).

Finally, comparing to sequential unicast allows us to explore the minimum number

of subscribes needed to make multicast a practical solution.

Each protocol was implemented on the same simulated IPv6 stack (similar to the

one provided by Blip). BAM had to be modified to work with the routing protocol

(RPL) because each node only maintains one route (to the root) in RPL while BAM

requires each node to maintain routes to every other node in the network. We solve

this problem by initially unicasting the multicast packet from the source to the root.

The root maintains a complete routing table and therefore can then implement the

BAM algorithm. The computed multicast tree is encoded in the packet header and
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sent down the tree to the subscribers following the original BAM protocol. Simple

flooding is implemented by modifying PIM-WSN to include a multicast group where

every node is implicitly subscribed. This retains the one-hop reliability mechanism

of PIM-WSN, where every node will forward each packet once, while removing the

subscription overhead. Finally, for our unicast implementation, each source node

maintains a list of subscribers that is initialized at the start of the simulation. When

transmitting a multicast packet, it is unicast sequentially to each subscriber with

a 25 millisecond delay between transmissions. We experimentally found that a 25

millisecond delay was sufficient to avoid collisions due to congestion at the source.

For each simulation we collect packet delivery ratio (PDR), latency, average num-

ber of hops, and radio utilization. PDR is computed as ratio of the number of received

data packets to how many should have been received (which is 100). In the case of

flooding, where every node should receive the packet, we only count receptions by

a node if it was selected as a multicast subscriber. Latency is computed by time

stamping the multicast packet when it is first transmitted and comparing this to the

current time when it is received. In the case of unicast, where packets are transmitted

sequentially, the transmission time is the time of the transmission to the first sub-

scribing node. Average hop count is computed by storing the hop count contained in

the first reception of each packet if duplicate packets were received. Because latency

is strongly dependent on hop count (which may vary from simulation to simulation)

we divide the latency by the hop count for comparison. Average radio utilization is

computed as the average percentage of the time that the radio was transmitting or

receiving. The radio utilization relates the efficiency of each protocol and represents

a lower bound on the radio duty cycle using an ideal low-power listening strategy.

However, this is not necessarily a good indicator of node energy consumption, because

it does not take into account timing or CPU energy consumption. Radio utilization

includes every node in the network while PDR, latency, and hop counts are computed
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Figure 4.3: The effect of Bloom filter errors.

only on subscribing nodes.

We repeat each trial 20 times with 100 data packet transmissions from each source

sent at a rate of 32 packets per minute (PPM) unless otherwise noted. The results

are averaged and 95% confidence intervals computed and plotted when visible.

Figure 4.3 shows the effect of bloom filter false positives on PIM-WSN. For this

experiment we compare PIM-WSN to PIM-WSN-Ideal. PIM-WSN-Ideal is imple-

mented with an unlimited buffer for storing exact subscription information on each

node. As a result there are no false positive results, which result in the unnecessary

forwarding of packets. In these experiments we increase both the number of sources

and subscribers per source; always keeping the number of sources and subscribers

per source equal. For example, if there were 5 source nodes each source also has 5

subscribers. This is necessary to increase the load on the bloom filter and therefore

create more false positive results. PDR and latency is not shown because there was

no significant effect.
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Because false positive Bloom filter results cause PIM-WSN to forward packets

unnecessarily, we expect to see an increase in average radio utilization as the number

of sources and subscribers increases. Both algorithms had nearly identical radio

utilization when there were few sources and subscribers (due to little unnecessary

forwarding). When the number of sources and subscribers increases, the number

of insertions into the bloom filter also increases, resulting in a higher rate of false

positive results. These false positive results cause unnecessary forwarding, which

increases the radio duty cycle. In the case of 14 sources and subscribers there are 196

(source, subscriber) pairs that could be inserted into the bloom filter of each node.

With this number of insertions into the Bloom filter the false positive rate could be

as high as 86.7% (if every multicast went through a single node). The result of these

false positives resulted in an increase in radio utilization by 29%. This demonstrates

the trade-off PIM-WSN makes to achieve constant memory usage.

Figure 4.4 shows the result of one source node sending data while increasing the

number of subscribers from 1 to 14. All methods achieve good PDR; over 95% in all

cases. The average PDR over all experiments were 100%, 99.62%, 98.67%, and 97.67%

for flooding, BAM, unicast, and PIM-WSN respectively. Flooding is able to do well

because our network is rather dense, so there are multiple opportunities for a node to

receive each packet. Although PIM-WSN had the worst PDR, we believe 97.67% is

good enough for many applications and is very energy efficient. Losses in PIM-WSN

arise when a node is forwarding to multiple one-hop neighbors. Because PIM-WSN

designates only one node to acknowledge each data packet, it has no way to detect

if a non-designated node fails to receive the packet. We could improve the PDR of

PIM-WSN by requiring every subscribed neighbor node acknowledge each multicast

packet as in BAM. However, BAM achieves only a 2% improvement in PDR compared

to PIM-WSN while radio utilization increases by 100%. The best solution might be

to dynamically select a variable number of subscribed neighbor nodes to acknowledge
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Figure 4.4: The effect of increasing the number of subscribers.

each packet based on the local network conditions; [66] explores this idea for broadcast

traffic.

Radio utilization in PIM-WSN was lower than all other protocols, even in the

case of just one subscriber. On average it was 52.66% lower than BAM, 61.11%

lower than unicast, and 83.99% lower than flooding. Although PIM-WSN has the

additional overhead of joining the multicast, it reduces packet transmissions by us-

ing a single designated acknowledgement node and by using overhearing for implicit

acknowledgments whenever possible. The setup costs happen once while the savings

on data transmissions occur every time a packet is sent. The scaling of PIM-WSN is

also better than either unicast or BAM. This is interesting because PIM-WSN does

not attempt to use optimized routes while BAM does. We see higher radio utilization
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in BAM because of two reasons. 1) it does not have a join phase where routes are

setup, rather the route is encoded in every multicast packet and as the number of

subscribers increases the amount of routing overhead also increases. 2) BAM requires

every neighbor node acknowledge each packet. The net effect is that BAM had sur-

prisingly high radio utilization. In fact, unicast was better than BAM until there

were 6 subscribers. Flooding had the highest radio utilization and did not depend on

the number of subscribing nodes, because every node receives every packet regardless

of whether it subscribed or not. If we extrapolate these trends linearly, unicast will

surpass flooding at 21 subscribers and BAM at 31; PIM-WSN remains more efficient

than flooding.

Flooding and PIM-WSN both achieve very low per hop latency (even better than

unicast). Because every node forwards every packet in flooding, it must therefore be

forwarded along the optimal path for each packet. PIM-WSN does well because it uses

implicit acknowledgments to reduce the overhead of forwarding a packet. The latency

of PIM-WSN is the only one to decrease as the number of subscribers increases. This

is due to the relative number of implicit acknowledgments increasing; PIM-WSN

effectively approaches the case of no explicit acknowledgments, as the number of

subscribers increases. BAM has higher latency because of two reasons: 1) in our

implementation the packet must first be unicast to the root and then multicast to

the subscribers; and 2) BAM uses delayed acknowledgments because every subscribed

neighbor node must send an acknowledgement.

Figure 4.5 shows the result of increasing the number of sources while holding the

number of subscribers per source constant at 5. This is a direct analog to increasing

the number of subscribers. As expected the results follow the same pattern. One

notable difference is that the latency of unicast does not depend on the number of

sources because each source is independent. The radio utilization of all algorithms

increases approximately linearly because no aggregation is performed by any of the
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Figure 4.5: The effect of increasing the number of sources.

algorithms between multicast packets from different sources. This result demonstrates

that PIM-WSN can efficiently handle multicast data from many sources.

In this experiment we use five source nodes each with five subscribers and then

vary the periodic transmission rate to achieve the desired data rate where each data

packet contains a 30 byte payload (as per Chapter 4.4). The results are shown in

Figure 4.6 and are consistent with the previous cases. Flooding achieves the best

PDR. PIM-WSN yields similar PDR to unicast while BAM experiences a steep drop

after 120 bytes per second per source. This highlights the weakness of routing every

packet through a single node as it quickly becomes a bottleneck.

We have previously seen the lowest latency with flooding, however, here we see

a steep increase. Considering that the radio utilization also grows rapidly, the most
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Figure 4.6: The effect of increasing the datarate.

likely cause is congestion. These results demonstrate that PIM-WSN can be used

equally well in both low and high data rate applications.

4.5 Implementation

To implement PIM-WSN we use TinyOS 2.x with the Blip IPv6 networking stack

as base. Because Blip is still a work in progress, PIM-WSN is implemented above

the IP layer. This isolates PIM-WSN from changes in the Blip networking stack. In

IPv6 multicast is indicated by the destination address of the packet matching the

prefix ff00::/8. Instead we use the protocol (next header) field of the IP interface

to indicate a multicast packet. PIM-WSN wires to this protocol on the IP interface

provided by Blip. PIM-WSN data packets are sent with the IP destination address
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FF02::1 which is translated by Blip into the IEEE 802.15.4 broadcast address 0xffff.

All PIM-WSN packets are sent with a common 20-byte header which could be reduced

to 10-bytes by removing diagnostic fields.

Our implementation of PIM-WSN on the TelosB platform requires 5,978 bytes

of ROM and 235 bytes of RAM. In a 10-hop linear network with one source and

one subscriber PIM-WSN delivered 96.76% of the packets. Repeating the experiment

using UDP yielded a comparable delivery rate of 97.63%. The latency (measured via

GPIO pins) averaged 326.8 ms from end-to-end for PIM-WSN while UDP averaged

253.6 ms, or a difference of 7.32 ms per hop. The increased latency is because the

reliability mechanism in PIM-WSN is implemented on top of IP. The IP interface

design forced us to use a longer resend delay because it hides all packet queuing

and processing delays at and below the IP layer. Blip implements reliability at layer

2 and is able to use a 15 ms resend delay. Because we do not have access to the

internal state of the IP protocol, we were use a 30 ms resend delay to account for the

unknown processing and queuing delays. This results in PIM-WSN having slightly

higher latency than UDP in practice, however, the primary reason to use PIM-WSN

is to enable multicast communication. These experiments are highly favorable to

PIM-WSN–they show that even in the worse case of one subscriber there is only a

very small performance penalty when compared to native UDP. In our future work,

we plan to better integrate PIM-WSN with the IP layer to completely eliminate this

problem.

4.6 Chapter Summary

This chapter presented PIM-WSN, a protocol independent multicast routing pro-

tocol tailored for IPv6 wireless sensor networks. The primary challenge to implement-

ing multicast in this domain is efficiency in terms of memory and energy. Our novel

design addresses the memory problem by approximating multicast group membership
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using a fixed sized Bloom filter. Energy efficiency is addressed by modifying the pro-

cedure for maintaining the multicast state. Our approach does not remove subscribers

due to timeout (thus requiring periodic rejoining) but rather on delivery failure. In

the event of delivery failure, PIM-WSN falls back to unicast routing and signals the

node to rejoin the multicast. This gives nodes high confidence that they will remain

in the multicast even after the failure of multicast forwarding paths. PIM-WSN has

been thoroughly evaluated using trace-based simulation and validated on a wireless

sensor network test bed of TelosB motes. Testbed results validate the functionality

of PIM-WSN and demonstrate that it performs well in practice.
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CHAPTER 5

BUILDING THE CASE FOR AUTOMATED BUILDING ENERGY

MANAGEMENT

Energy consumption due to buildings comprises a significant portion of our na-

tional energy consumption and can be strongly influenced by occupant behaviors. To

explore the quantitative effect of occupant behaviors on building energy consumption,

we have evaluated eight energy-saving behaviors, as well as the use of an in-home dis-

play (IHD), in ten homes over the course of ten weeks. The results showed maximum

savings ranging from 0%-20% attributed to the IHD. Additionally, we found evidence

that automation is necessary to ease the more tedious tasks such as “unplug when

not in use” and “unplug the TV,” where less than half of the participants performed

the action.

5.1 Chapter Overview

The U.S. Department of Energy (DOE) reports that buildings accounted for 39%

of the total energy consumption in the U.S. in 2009 [1]. Because energy consumption is

closely tied to occupant behavior, numerous building energy monitoring systems have

been recently developed [3–5] that provide homeowners with real-time electrical con-

sumption data to enable more informed energy use choices. However, it is clear that

monitoring alone does not always result in savings: For example, a recent study ob-

served an initial 31.9% reduction in energy consumption immediately after installing

a monitoring system, then after a month the reduction fell to only 3.7% [6]. This

suggests that while significant savings are possible, relying on occupants to change

their long-term behavior may be difficult. For significant and persistent energy sav-

ings, an automated building management system (BMS) combined with a judicious

choice of control strategies is required. This chapter presents findings from a ten-

week field investigation of the efficacies of various energy-saving control strategies.
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The experiment was a simple one: We monitored whole-house energy consumption

while occupants manually implemented each energy-saving strategy. To the best of

our knowledge this is the first study of its kind. Although our sample size and dura-

tion were limited, our results indicate that a much larger study of this type is both

feasible and likely to result in useful findings.

5.2 Analysis of Energy Saving Behaviors

There are numerous opportunities to save energy in a building. Some possibilities

are to increase insulation, replace old windows, or to buy energy efficient appliances.

These approaches are effective, however, they could be costly and do not consider

occupant behaviors—which can significantly impact energy consumption. To explore

how changing behaviors can reduce energy consumption we first consider to rec-

ommendations made by the Natural Resources Defense Council (NRDC) to reduce

household energy consumption [69]. However, it is not clear if we were to adopt some

or all of these behaviors, what would the quantitative impact on energy consumption

be? To answer this question we have slightly modify the NRDC suggestions to sep-

arate each action into a distinct components, listed in Table 5.1, and then evaluated

the effect of these behaviors in 10 homes over 10 weeks.

Table 5.1: Suggestions for saving energy (adapted from
NRDC recommendations)

Short name Description

Unplug When
Not In Use

Unplug seldom-used appliances, like an extra refrigerator in
the basement or garage that contains just a few items. You
may save around $10 every month on your utility bill. Un-
plug your chargers when you’re not charging. Every house
is full of little plastic power supplies to charge cell phones,
PDA’s, digital cameras, cordless tools and other personal
gadgets. Keep them unplugged until you need them.

58



Table 5.1: (continued)

Short name Description

Unplug the TV Use power strips to switch off televisions, home theater
equipment, and stereos when you’re not using them. Even
when you think these products are off, together, their
“standby” consumption can be equivalent to that of a 75
or 100 watt light bulb running continuously.

Set Computers
to Sleep and
Hibernate

Enable the “sleep mode” feature on your computer, allowing
it to use less power during periods of inactivity. In Windows,
the power management settings are found on your control
panel. Mac users, look for energy saving settings under sys-
tem preferences in the Apple Menu. Configure your com-
puter to “hibernate” automatically after 30 minutes or so
of inactivity. The “hibernate mode” turns the computer off
in a way that doesn’t require you to reload everything when
you switch it back on. Allowing your computer to hibernate
saves energy and is more time-efficient than shutting down
and restarting your computer from scratch. When you’re
done for the day, shut down.

Take Control of
Temperature

Set your thermostat in winter to 68 degrees or less dur-
ing the daytime, and 55 degrees before going to sleep (or
when you’re away for the day). During the summer, set
your thermostat to 78 degrees or more. Set the thermostat
on your water heater between 120 and 130 degrees. Lower
temperatures can save more energy, but you might run out
of hot water or end up using extra electricity to boost the
hot water temperature in your dishwasher.

Use Sunlight Use sunlight wisely. During the heating season, leave shades
and blinds open on sunny days, but close them at night to
reduce the amount of heat lost through windows. Close
shades and blinds during the summer or when the air con-
ditioner is in use or will be in use later in the day.

Tweak your Re-
frigerator

Set your refrigerator temperature at 38 to 42 degrees
Fahrenheit; your freezer should be set between 0 and 5 de-
grees Fahrenheit. Use the “power-save” switch if your fridge
has one, and make sure the door seals tightly. You can check
this by making sure that a dollar bill closed in between the
door gaskets is difficult to pull out. If it slides easily between
the gaskets, replace them.
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Table 5.1: (continued)

Short name Description

Use Appliances
Efficiently

Don’t preheat or “peek” inside the oven more than neces-
sary. Check the seal on the oven door, and use a microwave
oven for cooking or reheating small items. Wash only full
loads in your dishwasher, using short cycles for all but the
dirtiest dishes. This saves water and the energy used to
pump and heat it. Air-drying, if you have the time, can
also reduce energy use. In your clothes washer, set the ap-
propriate water level for the size of the load; wash in cold
water when practical, and always rinse in cold. Clean the
lint filter in the dryer after each use. Dry heavy and light
fabrics separately and don’t add wet items to a load that’s
already partly dry. If available, use the moisture sensor set-
ting. (A clothesline is the most energy-efficient clothes dryer
of all!)

Turn Down the
Lights

Don’t forget to flick the switch when you leave a room. Use
fewer lights. Just turn on the lights nearby instead of having
all the lights on in a room. Use sunlight whenever possible.

5.2.1 Experimental Setup

Using randomly selected participants from the National Renewable Energy Lab-

oratory (NREL), our goal was to quantify the effect of each of these suggestions on

energy consumption. Each household was assigned a different behavior from Ta-

ble Table 5.1 for each week of the study, including a “control” week where no special

behavior was assigned. The behaviors were assigned in a different order for each

household, so that for each week only one household was following any particular

behavior. The participants were informed that the purpose of the experiment was to

evaluate the energy savings potential of each behavior. They were given instructions

based on the NRDC recommendations and asked to strictly follow the behavior as

described. Because the participants were selected from NREL, we expect them to

highly capable and willing to implement the behaviors.

At the start of the each week the participants were given their new behavior and

reminded to stop performing the behavior from the previous week. We also asked
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Figure 5.1: Screenshot of the in-home display (IHD). The “Last Hour” graph and
textual information (last sample time, current power, and projected consumption) is
updated every 5 seconds. The “Today” graph is updated every 15 minutes.

participants to keep diaries of significant events that may impact the study such as

vacations, having guests, etc. so that data from these days could be excluded from the

analysis. In addition to the NRDC actions, we designated one week per participant

to investigate the effect of in-home displays (IHD’s) that monitor and display near-

real time electricity-use data. Figure 5.1 shows a screenshot of the web-based IHD

application that displayed the home’s measured energy consumption on a standard

laptop computer.

The experiment was conducted over 10 weeks, and during that period we moni-

tored whole-house electrical energy consumption with 5 second resolution. The mon-

itoring equipment is shown in Figure 5.2. Two current transformers (CT’s) and a

single Continental Control Systems WattNode were placed inside the electrical ser-

61



PC

Energy
Meter

Utility
Meter

Current Sensor

To Utility

To Service
Panel

Figure 5.2: Monitoring equipment.

vice panel at each home to monitor electric consumption (all participants had the

residential standard split-phase 240VAC service). A small form-factor PC queried

the WattNode for power and energy information every 5 seconds. This data was first

stored in a local database and then uploaded to a back-end server for analysis and

permanent storage.

To compensate for changes in weather on energy consumption using a PRISM-

like analysis [70], we also collected hourly average temperatures from the National

Weather Service for the length of the study. PRISM is a commonly used statistical

procedure designed to separate the energy consumption due to heating and cooling

from other uses, and is often used to evaluate the effect of energy-efficiency improve-

ments.

5.2.2 Pre-Experiment Survey

Each participant was asked to complete a short pre-experiment survey designed to

collect general information about the participant’s home and several factors that may

affect energy usage. Table 5.2 and Figure 5.3 summarize the results of this survey.

(Some participants did not answer all of the questions.)
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Table 5.2: Pre-experiment survey average results.
Number of adults per home 2.20
Number of children per home 0.63
Number of refrigerators/freezers per home 1.78
Approximate hours occupied per day 16.7
CFL lighting use 53%
EnergyStar appliances 38%
Number of households with a central air conditioner 5
Number of households with an evaporative cooler 4
Number of households with a home business or energy-intensive hobby 1
Number of households with hot tubs 1
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Figure 5.3: Construction year and square footage of participants’ homes. Dotted lines
indicate median values.

For comparison, the U.S. Census Bureau reports the average size of household is

2.61 (adults plus children, 2007) [71], slightly smaller than our study average house-

hold size of 2.83. The median year of construction for our sample is 1965, somewhat

older than the national average of 1973 [72], which may explain, in part, the slightly

smaller median square footage (2,184 for study sample versus 2,438 U.S. new construc-

tion average [73].) The U.S. Energy Information Administration reports that 17% of

homes have two or more refrigerators [74]; in stark contrast 50% of the participants

in our study had two or more refrigerators.
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5.2.3 Results
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Figure 5.4: Summary of collected data separated by house and behavior.

The raw data are presented in Figure 5.4. Solid lines indicate mean weekday

electricity used by each household. Weekend data are excluded for simplicity, as oc-

cupancy patterns are more likely differ dramatically between weekdays and weekends

than between different weekdays. The vertical bars correspond to the mean daily

energy usage for each behavior across the study sample. The dotted line at 28.84

kWh is the study-wide mean daily energy consumption. As expected, there is wide

diversity and variation in energy use patterns. For example, House7 shows very little

change in consumption, while House3 shows large variability from week to week.

To determine the effect of each behavior on energy consumption, we construct

a linear model for mean daily energy consumption. This is shown in Equation 5.1,
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where Yijk is the energy consumption in house j with behavior i on day of the week

k, α is the intercept, βi is the effect of behavior i, γj is the effect of house j, δk is the

effect of day of the week k, ρj ∗ tijk is the effect of ambient temperature relevant to

house j, behavior i, and day of the week k, and ηijk are random errors assumed to be

independent and normally distributed with constant variance.

Yijk = α + βi + γj + δk + ρj ∗ tijk + ηijk (5.1)

We found that replacing the mean daily outdoor temperature with the cooling degree-

hours computed assuming a fixed set point (as is customary in PRISM analysis [70])

had no significant effect on the results, so we use the simpler mean daily temperatures.
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Figure 5.5: Change in energy usage by day of week relative to Friday (90% confidence
intervals shown).

Figure 5.5 shows the computed coefficients for effect of the day of week relative to

Friday. The confidence intervals are at 90%. Clearly the day of week is not significant

in this study, even with 90% confidence. However, given a larger sample size, it may

be possible to identify variations due to the day of week.

Figure 5.6 shows the computed effect of each behavior (the βi terms from Equation

5.1). Due to the small sample size, no results were significant with 95% confidence,
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Figure 5.6: Change in energy usage by behavior relative to baseline (control) behavior
(90% confidence intervals shown).

so we relaxed the confidence to 90% for discussion. The in-home display (IHD) was

significantly better at reducing energy consumption than any single behavior for our

study group. This is not surprising, because during the IHD week participants were

able to use the provided feedback to reduce their energy consumption by targeting

any number of end-uses. Over one week, this resulted in a 0 ∼ 20% energy savings.

This correlates very well with the 0 ∼ 18% reported by the Electric Power Research

Institute (EPRI) [75] based on several IHD studies.

Due to the small sample size and short duration of our study, no other results

showed significant energy savings. However, there is some indication that “turn down

the lights” may yield energy savings. This avenue for savings could diminish over time

because our pre-study survey indicated only 53% of lighting was using CFL or other

energy efficient technologies. If this percentage is increased, the potential savings will

decrease.

66



The behaviors “Tweak your refrigerator,” “Unplug when not in use,” “Use ap-

pliances efficiently,” and “Set computers to sleep and hibernate” were not found to

be effective. Several possible explanations exist: First, the effect of these behaviors

may have been too small to see over our short study period. Second, because these

represent the most common-sense energy saving behaviors it is possible that the par-

ticipants were already performing these behaviors. Finally, the occupants may have

only partially performed the behavior (if at all). To explore this possibility we con-

ducted a post-experiment survey, described in Chapter 5.2.4.

The behaviors “Use sunlight” and “Take control of temperature” showed possible

increases in energy consumption, with the latter being significant. These results

are most likely a result of miscommunication or performing the behavior incorrectly.

For example, “Take control of temperature” suggested summer/winter set points for

HVAC. If the participant did not normally use their air conditioner, but turned it

on to comply with the behavior, we would expect increased consumption, although

this was not the intent. (This does, however, illustrate the dangers of generalizing

when specifying energy saving behaviors, as “one-size-fits-all” approaches may lead

to undesirable consequences.)

The significant increase for “Unplug the TV” was most likely caused by some other

factor not accounted for in our model. Examining the raw data in Figure 5.4, we see

that House3’s energy consumption is nearly double while performing this behavior.

For comparison, we excluded House3’s results for this behavior and recomputed the

results (See Figure 5.7). This results in a significant change for “Unplug the TV” as

well as slight changes for the other behaviors as well. The new results show “Unplug

the TV” to be similar in effect to “Tweak your refrigerator,” “Unplug when not in

use,” “Use appliances efficiently,” and “Set computers to sleep and hibernate.”

The overall conclusions that we can draw from these results are mixed. Our IHD

results are consistent with previous, more extensive studies, and demonstrate that

significant energy savings are possible. However, no single behavior that we tested
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Figure 5.7: Change in energy usage by behavior relative to baseline (control) behavior
with House3 excluded from behavior “Unplug the TV” (90% confidence intervals
shown).

was responsible for statistically significant whole-house energy savings. The results

for “Unplug when not in use” contradict our previous study where we saw signif-

icant savings using automated occupancy-based control. To reconcile this we plan

to reevaluate this behavior using our automated BMS and a much larger statistical

sample. Finally, the increased energy consumption for “Take control of temperature”

suggests that temperature control is an important component of energy consumption

and that more advanced control techniques (such as [76]) are essential.

5.2.4 Post-Experiment Survey

At the conclusion of the experiment, we asked participants to complete a second

short survey. The survey was sent to all participants before they received any results

from the study. Nine of the ten participants completed the survey.
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Table 5.3: Survey results to: “What do you expect the effect of this behavior to be
on your daily energy consumption?”

Behavior Used
Much
Less

Used
Less

No
change

Used
More

Used
Much
More

IHD 1 3 2 1 0
Unplug when not in use 0 2 2 5 0
Unplug the TV 0 3 4 2 0
Set computers to sleep and hibernate 0 2 4 2 1
Take control of temperature 2 0 2 1 3
Use sunlight 0 2 4 1 1
Tweak your refrigerator 0 1 4 3 0
Use appliances efficiently 2 0 3 2 1
Turn down the lights 0 3 2 3 1

Question one asks “‘What do you expect the effect of this behavior to be on

your daily energy consumption?” Table 5.3 shows the results. These results were

surprising because for each behavior, at least one participant expected it to increase

daily energy consumption. The largest expected increase was for “Take control of

temperature,” which matches the observed result. This supports our speculation

that the participants turned on their air conditioners specifically to comply with the

behavior.

At the other extreme, more people expected the IHD to provide energy sav-

ings than any other behavior. Perhaps the most surprising survey result was that

some people expected the behaviors: “Unplug when not in use,” “Use appliances effi-

ciently,” and “Set computers to sleep and hibernate” to increase energy consumption.

Table 5.4: Survey results to: “How well did you (and your family) follow each behav-
ior?”

Behavior Not at
all

About
half
of the
time

All of
the
time

IHD 2 0 4 1 0
Unplug when not in use 1 0 4 4 0
Unplug the TV 4 1 0 0 4
Set computers to sleep and hibernate 0 0 3 2 4
Take control of temperature 0 0 1 3 4
Use sunlight 0 0 2 3 3
Tweak your refrigerator 4 2 0 0 2
Use appliances efficiently 0 0 2 3 3
Turn down the lights 0 1 2 3 3
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The final question was “How well did you (and your family) follow each behavior?”

The results are shown in Table 5.4. These results can be used to estimate what energy

saving behaviors people are willing to implement manually. Because our participants

were all employees of NREL, we expect this group to have higher compliance than if we

selected from the entire population. “Take control of temperature” had the highest

reported compliance. This makes sense because it involves setting the thermostat

one time. The behaviors with lowest reported compliance were “Unplug the TV”

and “Tweak your refrigerator.” Unplugging the TV requires an extra step each

time the TV is turned on/off, so it is not surprising that people did not perform

this behavior consistently. We suspect that the low compliance for “Tweak your

refrigerator” was due to the need to find and use a refrigerator thermometer and wait

a long time between making adjustments. The low levels of compliance suggest that

these behaviors could benefit from automation.

5.3 Chapter Summary

In our quest to reduce residential energy consumption, we have conducted an

experimental study to quantify potential savings from eight different behaviors as

well as real-time monitoring via an IHD. The results of this study indicates that

none of suggested behaviors were as effective at reducing energy consumption as

the IHD. This is not surprising; given appropriate information savvy homeowners

can significantly reduce their energy consumption on their own. However, not all

homeowners are equally interested in saving energy, and our field study of limited

duration does not address the issue of persistence.

These results suggest that automated BMSs are necessary to reduce energy con-

sumption and they should focus on interaction with the homeowner (as with the

IHD), lighting, and possibly HVAC systems. We observed little to no effect from

instructing people to manually unplug miscellaneous electrical loads, computers, or
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televisions and the post-experiment survey confirmed that less than half of the par-

ticipants actually unplugged devices as instructed.
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CHAPTER 6

DISTRIBUTED BUILDING ENERGY MANAGEMENT USING PROTOCOL

INDEPENDENT MULTICAST

Automated building energy management systems are essential to enabling the de-

velopment of mass-market, low-energy buildings. In existing and future buildings, the

impacts of occupant behaviors contribute significantly to the total energy efficiency.

Chapter 5 suggests that there are many ways to save energy by altering behaviors,

however, most people are not willing to significantly change their behaviors. One so-

lution is to automate these energy saving behaviors. In this chapter we demonstrate

a prototype framework where building systems can share information in order to op-

timize performance. Using protocol independent multicast, sensors and controllers

efficiently share information in a distributed peer-to-peer fashion. In this study, the

system achieved an energy savings of 7.1% - 14.6% by implementing an occupancy-

based control policy. Based on the results of this work we have identified several key

areas for future work.

6.1 Chapter Overview

The U.S. department of energy reports that buildings were responsible for 39% of

the total energy consumption in the U.S. in 2009 [1]. Because energy consumption

is closely tied to occupant behavior, numerous building monitoring systems have

been recently developed [3–5] to provide occupants with detailed energy consumption

information. The impact of this data is significant; however, monitoring alone does

not always result in savings. A recent study observed an initial 31.9% reduction in

energy consumption immediately after installing a monitoring system; however, after

a month the reduction fell to only 3.7% [6]. This illustrates that while significant

savings are possible, relying on occupants to change their long-term behavior may
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be difficult. One alternative solution is to build systems that automate the energy

saving behaviors.

Automated building management systems (BMS) are expected to save an average

of 5% to 10% in residential households [75, 77, 78]. Although these savings are

significant, it equates to only $5-$10 per household per month [79]. To be practical,

a BMS must pay for itself within a few years, which means it should cost no more

than a few hundred dollars. As a result, deploying a WSN with sensors and actuators

dedicated exclusively for building management is too costly. However, if we leverage

existing sensors already in the home, we can significantly reduce the cost of the

BMS. For example, many homes have security systems which sense the states of

doors and windows and detect motion. Existing HVAC systems sense temperature.

Everyday household appliances have numerous on-board sensors ranging from the

simple refrigerator door switch to the complex sensing techniques possible with an

idle PC’s microphone and camera. It is even possible to collect device-level energy

usage in many appliances for free [80]. Of course none of these systems currently

share this very useful information. One reason is that there are no standards defining

how to share and consume this information.

Our proposed solution uses a wireless sensor network (WSN) to share this infor-

mation. Wireless sensor networks utilize low-powered low-cost wireless nodes com-

municating over an ad-hoc network. Standardization is emerging in the form of IEEE

802.15.4 [7] and 6lowpan [33]. The dominant communication paradigm in WSNs

is from the sensor nodes to a base station for processing and storage. Using this

approach we could easily construct a centralized building management system that

would process all sensed data and make optimized control decisions. However, for a

BMS to be more responsive, intuitive, robust, and scalable, a distributed approach is

essential. We define a distributed BMS as one where control decisions are made lo-

cally at the point of control using information received directly from any other nodes

in the network. For example, a light might receive sensor data from a wall switch,
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motion sensor, and light sensor. The control policy could be to turn on the light if

the switch is on and there has been motion in the last 15 minutes and the ambient

light level is below 200 lux; otherwise the light will be off to save energy.

Implementing a WSN-based distributed control system requires an efficient means

of sharing information between devices. The two general approaches to information

sharing are to pull or push the data. In a pull-based system, controllers would pe-

riodically poll the sensors, pulling the relevant information into the controller. This

places the burden on the control point to collect necessary information in a timely

manner while the sensor only needs to respond to requests. In a push-based sys-

tem, the sensors disseminate information to the controller when it is available. This

makes the controller’s job much easier by transferring more responsibilities to the

sensors. The ZigBee Smart Energy Profile 2.0 allows both forms of information shar-

ing [81]. For both cases it is implemented in the application layer with sequential

unicast communications, which creates redundant messaging when two nearby nodes

are consuming the same information. For example, two (or more) lights in the same

room might rely on the same set of sensors. Using unicast communication requires

unique messages for each sensor used by each controller. However, the broadcast

nature of wireless communication, makes it possible to improve efficiency by allowing

any interested node within a shared communication area to receive the same informa-

tion. We have implemented this approach using standard IP multicast that we have

adapted for WSNs. The result is that sensors can push information that is then effi-

ciently delivered to all interested control points. The use of IP multicast distributes

the responsibility for information sharing to the network rather than either the sensor

or controller. Because this is implemented at the network layer, redundant packet

transmissions can also be eliminated, which improves energy efficiency, information

timeliness, and network utilization.
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6.2 Prototype System

Our prototype BMS using PIM-WSN was deployed in two graduate student offices

on our campus. The deployment is depicted in Figure 6.1. The portion of the building

shown is approximately 120 feet by 40 feet. We configured the transmit power on

each mote to -10 dBm to simulate a physically larger and more interesting network

topology. This results in a maximum hop count of 5 from the base station in CH131 to

the motes in CH123. The control algorithm is distributed and implemented directly

on each energy controller. The base station is required by Blip to provide multihop

routing for unicast packets. Multicast data is then forwarded along the routes selected

by unicast routing protocol.

Figure 6.1: A building management system prototype deployment area. The offices
with energy controllers are CH131 and CH123. Letters indicate the approximate
location of nodes. Node types are abbreviated as: Light, Motion, Door, Energy
Controller, Relay, and Base-station.

6.2.1 Sensors and Controllers

Each office is outfitted with three sensors: 1) passive infrared (PIR) motion sensor,

2) door sensor (magnetic reed switch), and 3) ambient light sensor. To consume this

data, each office has an energy controller node. The energy controller plugs into

a standard electrical outlet and provides two outlets: one switched and one non-

switched. The energy controller also contains a power meter that measures real-

time power usage and total energy usage independently for each outlet. A power
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Figure 6.2: Door and PIR motion sensors.

strip is plugged into each outlet and all essential devices (PCs, refrigerator, network

equipment, etc.) are plugged into the non-switched power strip. Non-essential devices

(LCD, printer, coffee pot, microwave, etc.) are plugged into the switched power strip.

The sensors and energy controller each use a modified TelosB mote programmed with

TinyOS 2.x and our implementation of PIM-WSN. The premise is that the energy

controller will detect and process the available sensor data and intelligently control

the switched outlet to save energy by switching off non-essential devices when the

office is unoccupied.

1) Motion sensor

The motion sensor is a PIR sensor (Parallax #555-28027) with a motion detection

range of approximately 20 feet (lower mote in Figure 6.2). It is configured to send

repeated pulses when there is continuous motion. The sensor output is attached to

the TelosB’s expansion connector on an interrupt-enabled GPIO pin. This allows the

sensor to wake up the TelosB when motion is detected. Every transition of the GPIO
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Figure 6.3: Energy controller node.

pin causes a single multicast packet to be transmitted indicating the motion sensor

output (motion or no motion). Because the sensor requires 3.3V-5.0V to operate

reliably, it is powered directly from the USB interface.

2) Door sensor

The door sensor is a magnetic proximity switch (C&K Components #MPS45WGW)

attached to each office door (upper mote in Figure 6.2). The switch is interfaced to

the TelosB in the same configuration as the motion sensor. An interrupt-enabled

GPIO pin allows the sensor to wake the mote when the state of the door changes.

When the switch changes value a single multicast packet is sent indicating the current

state of the door (open or closed). Although multicast packet delivery is generally

very reliable, it is not guaranteed. Because it is likely to only send one or two packets

(unlike the motion sensor that generally sends several), we also use a periodic timer
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to send the door state once per minute. This allows the energy controller to miss

packets and still maintain acceptable functionality.

3) Ambient light sensor

The ambient light sensor is the TelosB’s on board Hamamatsu S1087 photodiode

read by the MSP430’s internal ADC. The photodiode is polled randomly once every

0.75±0.25 seconds. Typical ADC readings range from 0 (dark) to the several hundred

for normal office lighting. If the sampled light value is more than 25 higher or lower

than the last reported value it is multicast immediately. Otherwise, one sample is

sent every 100 readings. This results in a data rate of at least one packet every 75±25

seconds while still being responsive to rapid changes, such as the lights being turned

on or off.

4) Energy Controller

The energy controller is a TelosB with a Tyco relay (# T9AS1D12-5) that is

rated for 220V@30A and a WattNode3 energy meter to allow power monitoring. We

use a standard 6"x6"x4" electrical box to house this equipment. Power comes in

through an IEC C14 connector, passes through a 15A current transformer (CT),

and travels in parallel to the non-switched side of a standard NEMA 5-15 outlet

and the AC relay. The output of the relay passes through another 15A CT and

then on to the switched side of the outlet. The WattNode, relay, and TelosB are

powered from the non-switched AC supply so the energy controller’s power usage

is included in the non-switched power measurement. Because of this configuration,

we are measuring total power and switched power; the non-switched power usage is

simply the difference between the two measurements. The power meter is configured

to average instantaneous power readings over a 20 second sliding window. The TelosB

then samples the real (W) and reactive (VAR) power, line voltage (V), frequency

(Hz), and total energy used (kW h) once every five seconds for each phase (total

and switched). The sensor data is then augmented with the current occupancy value

3http://www.ccontrolsys.com/products/wattnode_modbus.html

79

http://www.ccontrolsys.com/products/wattnode_modbus.html


(true/false) and encoded in a single packet and transmitted sequentially as a multicast

packet and as a serial packet (for logging).

Figure 6.3 shows the energy controller. The top figure shows the power input and

outlets. The middle figure is TelosB with interface circuitry. The WattNode uses

the Modbus [10] serial communications protocol over an EIA-485 physical link, so an

EIA-485 adapter was added on uart0 of the TelosB. The relay requires 200 mA to

activate, so a supplemental AC/DC power supply was also added. Because the mote

was powered via USB (to collect diagnostic information) an opto-isolator was used

to interface to the relay (the WattNode’s EIA-485 interface is already isolated). The

internal wiring is shown in the bottom figure.

6.2.2 Control Algorithm

Each energy controller is preprogrammed with the room number it is deployed to

so that it can search for sensors (see Chapter 6.2.3) in the same room (each sensor

is also programmed with its room number). When a door, motion, or light sensor is

detected in the same room, the energy controller subscribes to that node’s multicast

and begins receiving sensor data. Our control algorithm (Figure 6.4) relies on detect-

ing when the occupancy changes and then switching the relay on or off accordingly.

Occupancy detection is a difficult problem and not our focus, so we use a simple

but effective algorithm tailored to our office environment. Each office has a single

door. We assume that the office is occupied if the door is open and that the door

is shut when unoccupied (this is nearly always true). As a result, occupancy can

only change after a door-close event. Therefore, when the door is open, the energy

controller switches to the occupied mode. After detecting a door-close event it starts

a 60-second timer. While this timer is running it counts the number of motion events

received. When there is constant motion the motion sensor will send one motion

event per second, but even when there is no motion one or two (false) motion events

per hour. To reduce the impact of false motion events, we use a threshold of 5 or
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more motion counts in the 60-second interval to indicate that the room is occupied.

In practice this algorithm works very well in our offices and could be easily applied in

residential homes by interfacing to a security system with door and motion sensors.

if door open then

// room is occupied

setRelay(close)

else

// assess occupancy

count = 0

for 60 seconds do

wait for motion event or timeout

count += 1

end for

if count ≥ 5 then

// room is occupied

setRelay(close)

else

// room is not occupied

setRelay(open)

end if

end if

Figure 6.4: An occupancy detection algorithm executed each time the door state
changes

6.2.3 Service Discovery

One remaining challenge is to decide how the energy controller initially subscribes

to the multicast from each sensor. One approach is to hard-code the source address

of each sensor, by definition this is not a very flexible solution. Instead, we have im-

plemented a service discovery protocol that is similar to the Simple Service Discovery

Protocol (SSDP) [82]. SSDP is used by Universal Plug and Play (UPnP) to detect

other UPnP devices. It uses HTTP formatted messages over a predefined multicast

group. In our implementation we use two fixed format messages, rather than the vari-

able format HTTP messages, to simplify processing. We have also assigned a special

multicast group in PIM-WSN where all nodes are assumed to subscribe. This effec-

tively allows PIM-WSN to broadcast the service discovery messages to every node
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in the network. The two messages are: advertisement and query. Common to both

of the messages are two 8-character fields defining the sensor type and domain. The

sensor types we used are: motion, light, door, and energy. The domain is used to

indicate the room number of the sensor: CH123 or CH131.

There are two ways to detect a sensor. The first is at startup, because up it will

initially transmit several advertisements to the service discovery multicast group. If

a node is interested in the advertised sensor it can then join the multicast immedi-

ately. The second way to detect a sensor is to have the interested node send a query

message to the service discovery multicast group. The query message allows wildcard

searches on the type and domain values. All nodes that receive the query will check

to see if their service description matches, and if so, the node replies with a unicast

advertisement.

6.3 Experimental Results

Figure 6.5 shows the power and cumulative energy usage logged by the energy

controller in CH131 over two typical days. On day one (Figure 6.5(a)) the relay was

disabled to detect and compute wasted energy. On day two (Figure 6.5(b)) the relay

was enabled to control the wasted energy. The non-switched devices are: two PCs,

one laptop, two small refrigerators, and an Ethernet switch. The switched devices are:

two LCD displays, a laser printer, two powered speakers, a desk lamp, a microwave,

and a coffee pot. The large spikes in the switched data are due to the coffee pot,

microwave, and laser printer. The oscillations in the non-switch data are due to the

refrigerators.

Figure 6.5(a) shows the first day where the room was occupied for 7h 52m 46s.

The switched devices consumed a total of 1.6362 kW h and the non-switched devices

consumed 5.0972 kW h. Of the switched total, 0.7008 kW h was consumed (wasted)

while the room was unoccupied. The minimum power usage was 33 watts. This

reveals a potential savings of 42.8% of the total energy used by switched devices
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or equivalently 10.4% of the total (switched plus non-switched) measured energy

consumption. Performing the same analysis on the other office yields a potential

savings of 6.89%.

On the next day the relay was enabled and the results are shown in Figure 6.5(b).

On this day the room was occupied for 9h 56m 21s. The switched devices consumed a

total of 0.9120 kW h wile the non-switched devices consumed 5.3426 kW h. The non-

switched devices consumed 4.8% more on this day, most likely due to the increased

occupancy. Despite this fact, the switched devices now consumed 0.7242 kW h less

than the previous day. The total energy consumption (switched plus non-switched)

was 6.2546 kW h or 7.1% less than the previous experiment. The same analysis for

the other room shows that the total energy consumption was reduced by 14.6%.

On the first day we measured that 0.7008 kW h of electricity was wasted. On the

second day we controlled the devices to reduce waste and the total measured energy

usage was 0.7242 kW h less than the total on the previous day. These results are very

consistent between the two days. If we then assume an average daily savings of 0.7 kW

h and then multiply by 365 for a conservative estimate of the yearly savings (because

unoccupied time, and therefore savings, is expected to be greater on weekends and

holidays) the result is 255 kW h. Then, if we assume this savings is typical over all 41

offices in our building, the estimated building-wide savings becomes approximately

10 MW h per year. This equates to an annual reduction of approximately 7.8 tons of

CO2
4 and a savings of approximately $1,000.

Over the last year our building’s total energy consumption was approximately 300

MW h; however, this includes HVAC and lighting. We could expand our system to

include these systems or for calculation exclude them from the total energy usage.

According to [1] in an average building HVAC and lighting represent 53% of the

building’s total energy consumption. This can be used to compute the total energy

consumption excluding HVAC and lighting as 141 MW h. Fully deployed, our BMS

41.5 lbs CO2 per kW h
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is expected to reduce this by 10 MW h, or over 7%. Because this value is close

to our achieved savings, it gives confidence that the offices used in this study are

representative of the average energy consumption in the building.

If we assume the building already has sensors able to detect room occupancy (and

they share this data), the only additional hardware required to implement this system

is a simplified energy controller node for each office (the energy monitor function is

not needed). To achieve a one year payback period (assuming 0.7kW h per day

savings), the resulting budget is $25 per node. This is more than the cost of our

TelosB motes, but, commercial IEEE 802.15.4 devices like the XBee are currently

priced around $20 each. The relay that we used is currently priced at $1.40 each.

This gives us confidence that this type of distributed control system could achieve a

one year payback period.

6.4 Chapter Summary

Advanced building management systems will eventually become common in resi-

dential and commercial buildings because occupant behaviors have a significant im-

pact on the total energy consumption. To be successful these systems must be respon-

sive, intuitive, robust, and scalable. Our approach is a fully distributed architecture

using WSN-class nodes coupled with an efficient multicast communication protocol.

This allows each controller to autonomously locate and receive relevant sensor infor-

mation from other nodes in the network. Because control decisions are made at each

control point, if a sensor or communication link fails the controller can still make

reasonable control decisions. Our prototype system achieved an energy savings of

7.1% - 14.6% by implementing an occupancy-based control policy.

Based on the results of this work we have identified the following key areas for

future work:

Reliability - Although PIM-WSN achieves good packet delivery (>97% under

normal conditions [83]), missing just one packet can cause a control algorithm to
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fail. In our case the “door open” packet was crucial to receive or the occupant could

walk into a room with all their devices powered off. We consider any packet delivery

failure as a network disconnect, even if it is a transient event. To solve this, first

we need a robust way to detect these disconnections. Second, once the node regains

communication the missed packets should then be delivered to the node. This is

reminiscent of the Trickle algorithm [84]. To be applied in this domain the algorithm

must support rapidly changing data from many sensors in the network.

Minimizing sensor power consumption - To minimize the number of packets

sent, PIM-WSN uses one-hop broadcast messages to deliver packets to multiple nodes

simultaneously. Most modern low-power protocols focus on unicast rather than mul-

ticast or broadcast and as a result their performance in these cases is greatly reduced.

In order to support battery powered or energy harvesting sensor nodes, efficient low

power communication is essential. Synchronized low-power protocols represent one

approach to alleviating this problem.
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Figure 6.5: Experimental results over a typical day.
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CHAPTER 7

ACHIEVING RELIABLE WIRELESS AUTOMATION AND CONTROL USING

GLOBAL SHARED MEMORY

Improving energy efficiency in residential homes is a challenge that must be solved.

As improvements in building construction improve the mechanical efficiency of build-

ings, the relative impact of other building loads is heightened. To mitigate the increas-

ing significance of electrical loads, we have proposed a distributed wireless building

automation and control architecture. This architecture allows a paradigm shift from

the typically centralized building automation and control systems to a distributed

approach which we believe is more appropriate for residential homes. Our previous

implementation of this architecture relied on protocol independent multicast (PIM) to

share sensor data. Our evaluation identified two key areas for improvement: reliabil-

ity and supporting low-powered sensor nodes. In this chapter, we present a complete

hardware and software solution for building general purpose wireless automation and

control systems with guaranteed reliability and support for ultra-low duty cycled sen-

sor nodes. Sensor data is shared through a global shared memory abstraction that

ensures the eventual delivery of sensor data. Essentially this abstraction provides

infinite retransmissions. In our evaluation, we observed an 88% reduction in standby

losses for a home entertainment system. Using published statistics on home entertain-

ment and home office systems, we expect this approach, on average, to reduce energy

consumption of home entertainment device by 17%, or equivalently a 2.3% reduction

in whole-house energy consumption. This work also provides a general purpose dis-

tributed automation and control framework that can be extended to implement other

energy saving measures such as intelligent lighting and adaptive HVAC systems.
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7.1 Chapter Overview

Current generation building automation and control (BAC) systems (e.g., SCADA)

rely on highly planned heterogeneous deployments of sensors and actuators commu-

nicating to a central controller. When considering BAC for residential homes, the

large number of existing homes precludes any approach that requires significant plan-

ning or professional installation. Even for new construction, the cost of current BAC

systems is likely too high. Instead, what is needed is a low-cost modular system that

can be bought by any homeowner, taken out of the box, and just works. This chapter

presents our alternative approach for a wireless distributed BAC system that meets

these requirements.

Our model for a wireless BAC is composed of three classes of nodes: 1) sensing

2) controlling, and 3) a mesh-networking core. Sensing nodes provide the inputs to

the control system and are expected to be physically separate from the actual control

nodes themselves. This is to allow sensors to be placed near a specific building feature,

such as a door, and then several controllers may consume this input while being lo-

cated near the device, system, or appliance (e.g., a lamp). The sensing nodes monitor

temperature, light, humidity, motion, door state, etc. Controller nodes make control

decisions by locally processing data from the sensing nodes. The networking core

ensures that sensed data are delivered rapidly and reliably to the controller nodes.

This architecture, first proposed by Schmid, et al. [85], takes advantage of infrastruc-

ture power, when available, to greatly simplify and reduce energy consumption of the

sensing nodes.

The significance of this model is that there is no central device responsible for any

part of the system; the BAC system is fully distributed. Sensor data is received by any

control node within range of the sensor and then the controller will ensure the data

is efficiently transmitted to all other control nodes in the network. Each controller

makes independent control decisions using the available sensor data. This approach
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was selected to improve reliability and expandability of the system. Reliability is

critical, and our distributed approach eliminates the possibility of a single failure

disabling the entire system. Expandability is a key feature that allows a small control

system to be initially deployed and then additional sensors or controllers to be added

at a later time. Because the control strategy is fully implemented by the control node,

no configuration changes or software updates would be needed by existing nodes in

the network to support the additional nodes.

The primary challenge in using WSN techniques for distributed control is that the

dominant communication paradigm in WSNs is base-station-centric while distributed

control requires a peer-to-peer model. We have previously demonstrated how PIM-

WSN (Chapter 6) can be used to share sensor data. In this work PIM-WSN achieved

>97% packet delivery, but this may not be sufficient for a BAC system. The challenge

of guaranteeing reliability has been solved in traditional WSNs for applications such

as code update [84]; however, for distributed automation and control minimizing

latency is an additional consideration that has less support from existing approaches.

To implement a highly reliable distributed BAC, we have deployed a global shared

memory (GSM) abstraction for WSN-class nodes to efficiently share building informa-

tion in a distributed peer-to-peer fashion. Specialized sensing and control nodes have

been developed and deployed in a residential home implementing two basic control

strategies where an average energy savings of 195 watt hours per day (71 kWh per

year) was achieved. Further analysis shows that the expected energy savings is 17.5%

for home office and entertainment devices, on average, yielding a 2.3% reduction in

whole-house energy consumption.

7.2 Related Work

One of the earliest example of an advanced building automation and control sys-

tem is the Neural Network House [14]. The Neural Network House contains about 75

sensors and actuators wired to a central controller. The goal of the Neural Network
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House is twofold: appeasing the inhabitants and conserving energy. As the name im-

plies neural networks are used to predict behaviors and then automatically configure

the environment by controlling lights and the heating and cooling systems. This is

similar to our high-level approach, however, our system utilizes wirelessly connected

distributed controllers.

Wireless sensor networks have been previously applied to monitor appliance energy

consumption [6], intelligently control lighting [86], and to improve heating and cooling

efficiency [76]. However, these have been special-purpose systems requiring manual

configuration and dedicated servers. Our approach is to develop a general purpose

distributed WSN control architecture that can be applied in residential buildings.

7.3 System Hardware Design

Building automation and control systems currently rely on numerous sensors, typ-

ically hardwired, throughout the building using a myriad of communication protocols

(BACnet, LonTalk, ModBus, etc.) to communicate data to a central controller.

Wireless protocols (ZigBee, Wireless HART, EnOcean, etc.) have been employed

to replace some or all of the wired links. However, even when wireless components

are used, the central controller is still responsible for making control decisions. The

central controller is typically a programmable logic controller (PLC) that implements

basic automation tasks. Our proposed approach is a paradigm shift from centralized

control to a distributed approach. This is motivated because the microcontrollers

typically found on wireless platforms are capable of implementing basic automation

and control tasks without requiring any additional resources. The end result is, by

simply utilizing wireless components, we eliminate the need for a central controller

entirely.

Because there is no currently available WSN platform that includes a complete set

of building sensors, we have developed a dedicated building sensor node based on the

Epic core module [87]. This node provides sensing of several key building parameters
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(temperature, humidity, light, motion, and door state), described in Chapter 7.3.1.

To make use of this information for control and to provide a robust mesh-networking

core, we have also developed an automation controller based on the Berkeley Wireless

AC Meter [6]. A mechanical relay was added, in addition to the energy meter, to

enable switching of an attached device and is further described in Chapter 7.3.2.

7.3.1 Sensor Node

Ambient light sensor 
(amplified photodiode, 125μA)

Door sensor (magnetic reed 
switch, 3μA closed)

Humidity sensor 
(200μA, ±3% RH)

620mAh lithium ion battery
EPIC core module
MSP430F1611 16-bit MCU 10K RAM 48K ROM
CC2420 2.4GHz IEEE 802.15.4 radio
1Mbit flash memory

Inverted-F 
antenna

User button + reset
Temperature sensor 
(34μA, ±0.5°C calibrated)

Battery current sensor + amplifier
for power introspection

PIR motion sensor (46μA)

Figure 7.1: Wireless building sensor.

The sensor node is shown in Figure 7.1. The main components are the Epic core

module (left), coin cell battery (lower right), and sensors (upper right). The battery

is a 3V CR2450 manganese dioxide lithium cell with a nominal capacity of 620 mAh.

Because node lifetime is the most significant design consideration, we have selected

an array of low-power sensors, summarized in Table 7.1.

Table 7.1: Sensors used in our building sensor node.
Manufacturer Model Description Active Current

Honeywell HIH-5030 Humidity 200 µA
Panasonic AMS302 Photodiode+Amp 125 µA
Panasonic AMN41122 PIR Motion 46 µA
Microchip TC1046 Temperature 35 µA
MEDER MK06 Door Switch 3 µA
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To estimate the lifetime of the sensor node we consider the primary components of

power consumption. All of the sensors, except the motion sensor, can be duty-cycled

to reduce energy consumption. The motion sensor must remain on to properly de-

tect motion because the sensor has a 30-second startup time. Duty-cycling this sensor

would result in large amounts of time waiting for the sensor to turn on and potentially

missed motion events. We experimentally measured the current consumption with

all sensors and the microcontroller on to be 2.2 mA. Sampling the sensors, with ap-

propriate startup delays, takes approximately 100 ms. Therefore, the energy required

to read all sensors (excluding the PIR), is approximately 660 µJ. The motion sensor

continuously uses 46 µA. We assume the power consumption of the microcontroller

and radio is negligible in sleep mode; the resulting idle energy consumption is 11.9 J

per day.

The remaining energy consuming task is transmitting data. The low-power com-

munication protocol uses link-layer acknowledgments and will retry a transmission

up to three times with a randomized delay up to 200 ms (see Chapter 7.4.1). We

experimentally measured a failed transmission to use 22.5 mA for 534 ms, consuming

36 mJ. A successful transmission used 22.5 mA for 78 ms, consuming 5 mJ. Because

sampling the duty-cycled sensors consumes much less energy than transmitting a data

packet, we will always sample the sensors just prior to every transmission. The final

estimate for energy consumption is shown in Equation (7.1) where α is the number

of failed transmissions, β is the number of successful transmissions, α+β is the total

number of sensor readings, and the motion sensor was powered for δ days.

E(α, β, δ) = α ∗ 36mJ + β ∗ 5mJ +

(α + β) ∗ 660µJ + δ ∗ 11.9J (7.1)

Referencing the battery datasheet, we estimate that under a constant 420 µA

discharge, the battery releases approximately 5,800 J of energy. We combine this with

Equation (7.1) and compute the trade-off between sampling rate and node lifetime in
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Figure 7.2: Theoretical sensor lifetime with 620mAh battery.

Figure 7.2. The two curves shown bound the node’s lifetime. The best case is when

every transmission is successful (α = 0). The worst case is when every transmission

fails (β = 0). In practice we expect something in between. The lifetime resulting from

only powering the motion sensor constantly is 487 days. We see from the figure that

in the best case this maximum lifetime quickly approaches the limit as the sample

period is increased to 5 minutes. After 5 minutes there is little benefit in terms of

lifetime. As a result we have selected 5 minutes as the sensor sampling period to

balance data collection and node lifetime.

Table 7.2: Sensor node energy consumption by function.
Function Best-Case (435 days) Worst-Case (261 days)

Motion detection 89% 54%
Other sensors 1% < 1%
Data transmission 10% 46%

Using a 5 minute sampling period, we now examine the energy consumption by

each function in Table 7.2. In the best case the motion sensor dominates energy

consumption. The other sensors (humidity, light, temperature) consume very little

energy because they can be effectively duty-cycled. For example, although the hu-

midity sensor consumes the most current (200 µA), it has a short 70 ms startup time.

Sampling this sensor once every 5 minutes yields a 0.023% duty-cycle, resulting in

low energy consumption.
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A successfully acknowledged data transmission required approximately 78 ms;

every 5 minutes this yields a very low 0.026% radio duty-cycle. In the worst-case,

the energy consumed by data transmission significantly increases to a relatively low

0.178%. This illustrates that even low-duty cycle radio communications significantly

impact energy consumption.

7.3.2 Automation and Control Node

To provide automation for the BAC system, we have adapted the ACme developed

at U.C. Berkeley [6] to include a Panasonic DK series mechanical latching relay. This

relay is rated for loads up to 10 A and 250 VAC. Because the relay latches in both the

on and off states, it only uses energy to change state (2 mJ). Additionally, no heat

sink is required, unlike a solid state relay. This allows most small household devices

to be efficiently controlled while minimizing energy consumption by the controller.

While active (not switching), the node consumes 0.25 watts of power. We retain

the Analog Devices ADE7753 single phase multifunction energy metering IC, central

to the ACme, so that the attached device can be monitored as well as controlled.

The enclosure is larger than the second generation ACme (4.11 x 2.23 x 2.50 in) to

accommodate the relay. The internal circuit board and assembled device are shown

in Figure 7.3.

7.4 System Software Design

Because BAC systems interface with line-powered systems, devices, and appli-

ances, it is also useful to utilize the available power for the mesh-network and automa-

tion and control nodes. This allows the self-powered sensing nodes to be optimized

for low-power operation. As a result of this separation, there are two distinct network

protocols in the system. The first is a one-way, sensor to router, asynchronous com-

munications protocol described in Chapter 7.4.1. This design allows very low-duty
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Figure 7.3: Device automation controller.

cycle communication from the sensor nodes. The powered automation and control

nodes implement the receiving side of this protocol while also sharing received data

using our global shared memory (GSM) abstraction, described in Chapter 7.4.2.

7.4.1 Sensor Communication Protocol lpSend

Sensor communication is a challenging task considering we would like the sensor

node to last for years, if possible. The most common method to reduce the energy

costs of radio communication is to duty-cycle the radio. Low power listening is the

usual strategy where nodes periodically turn on their radio for short amounts of time

to listen for incoming packets. If a data transmission is detected in one of these listen

periods, the radio is kept on to receive the packet. Transmitters prefix their data

transmissions with a series of messages indicating a data transmission will occur in

the near future. This puts a significant burden on the transmitting node. In our

application, the transmitting nodes are energy constrained, while the receiving nodes

are powered by the household electric supply. This distinction justifies our approach

of optimizing the protocol to minimize energy for the transmitting node.
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Our sensor communication protocol is refereed to as lpSend for low-power send.

This protocol is a one-way, sensor to router, asynchronous communications protocol.

Two-way communication is possible in this architecture and is explored in [85], but

is not essential to this application. The lpSend protocol is intended to support very-

low duty-cycled operation of sensor nodes and enable long battery lifetimes. As a

result, it maintains no routing state. Instead, a data transmission is initiated by a

probe message containing a response window. Routing nodes that receive the probe

reply with a random delay within the requested response window. Data is then

sent to the source of the first response received using software retransmissions and

acknowledgments provided by TinyOS. For our deployment we limit the number of

probe messages sent to three. The response window is 100 ms. Upon receiving a

probe response, the software link layer is allowed up to 10 retransmissions with 15

ms delay. The transmission fails if no probe responses are received or the link layer

fails to deliver the message.

At this point the protocol is complete but there is a simple improvement. The

lpSend protocol can also implement dynamic power control. Jeong, Culler, and Oh

analyzed several power control algorithms for various traffic patterns and found zero

to 37% reduction in power consumption with various traffic patterns [88]. Although

reducing power consumption is one possible benefit, our primary concern is reducing

contention in the network. Congestion could be a problem because in response to the

probe message, the lpSend protocol requires all routing nodes to send a probe response

message. Power control effectively limits the number of these messages by limiting

the number of routing nodes receiving each probe.

The basic algorithm for dynamic power control is to transmit a broadcast message

and count the number of responses. If the count is greater than a threshold, power is

reduced. If the count is less than another threshold, power is increased. The CC2420

radio has 32 distinct power levels (0 - 31), so we apply a simple algorithm to continu-

ously adjust the power level. The transmit power arbitrarily starts at 16 and for every

96



18 20 22 24 26 28 30
Transmit power

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45

Fr
eq

ue
nc

y

Figure 7.4: Typical sensor transmission power distribution

probe retransmission it is increased by 2. After a successful transmission, we add a

small delay (10 ms) to count additional responses. If the number of responses is more

than 3, the power is decreased by 1 for the next transmission. This adapts the trans-

mit power to maintain communication with three routing nodes in the network. Our

approach does not decrease the size of the transmit power adjustment as suggested by

Jeong, Culler, and Oh. Because we expect long deployment times (months or years),

our goal is not to converge to a single optimal value. Instead, our goal is to enable

the nodes to respond quickly to the current network conditions. Figure 7.4 shows a

histogram of the transmit power of a particular node over one week. We found no

correlation between transmit power and time of day. In our deployment (Chapter

7.7), this protocol delivered 99.96% of the data packets to the routing nodes.

7.4.2 Automation and Control Protocol (GSM)

The communication challenge for the routing nodes is to 1) receive sensor data

using the lpSend protocol and 2) share both sensor and energy data with other nodes

in the network. Implementing the receiving side of the lpSend protocol is straight-

forward. The second challenge is more difficult because few existing solutions are

available for peer-to-peer information sharing.

One exception is the TeenyLIME middleware [89]. TeenyLIME maintains a shared

tuple-space between one-hop neighbor nodes. Our design is similar, with two signifi-

cant differences. First, information is shared between all nodes in the network, across
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multiple hops. Second, no modifications were made to the TinyOS 2.x distribution to

accommodate our protocol, improving the interoperability with the TinyOS core and

simplifying implementation for those already familiar with TinyOS programming.

We have previously utilized multicast communication to allow control controllers

to dynamically subscribe and receive sensor data in BAC systems [83, 90]. However,

one challenge facing any multicast implementation is to store the necessary state

information. Our solution to this problem was to approximate the multicast state

information. As a result the multicast protocol would revert to broadcast whenever

the multicast forwarding rules were too complex. Furthermore, occupancy detection,

a critical component of any BAC, is a good candidate for a broadcast protocol because

it requires data from all motion sensors to make a proper occupancy assessment.

To explore the difference in network traffic generation from multicast and broad-

cast, we consider a hypothetical 64-node network. This network was constructed

geometrically by iteratively adding nodes starting from an arbitrary initial location

and sequentially placing a node randomly within the communication range of the last

placed node. We then randomly select a source node and set of multicast subscribers.

To estimate the minimum number of transmissions, we construct a graph of this net-

work including all nodes on the shortest path between the source and each subscriber.

The order of the multipoint relay (MPR) set of this graph approximates the minimum

number of transmissions required for the source to reach each subscriber node. In

the case of broadcast, the order of the MPR set for the entire network, generated

from the randomly select source, is used. In both cases the classic MPR selection

algorithm was applied [91]. The median number of transmissions required are shown

in Figure 7.5 for both multicast and broadcast. For each number of multicast sub-

scribers, 64 different (source, subscriber) sets were randomly selected. Because these

results significantly depend on the network topology, density, and (source, subscriber)

set, we only consider the general trend that as the number of multicast subscribers

increase the savings afforded by multicast is quickly diminished. When considering
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this fact, we expect that in many cases mutlicast offers little benefit while consum-

ing significant resources. For a BAC where reliability is arguably more important

than efficiency, these resources may be better utilized to buffer and retransmit sensor

data than to maintain the multicast state. Therefore, we focus our work on using

broadcast communication to implement the reliable information sharing needed by a

WSN-based BAC system.
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Figure 7.5: Required transmissions for increasing multicast subscribers in a random
network.

Our criteria for a reliable broadcast algorithm is that in a connected network, for

a given packet with infinite retransmissions and time, the packet must be delivered to

every node in the network at least once. Simple flooding where every node retransmits

the packet the first time it is received is often cited as having good reliability because

at each node, every neighbor node will transmit the packet resulting in multiple

opportunities to receive the same packet. For example, a node with n neighbors

would have up to n opportunities to receive the packet. This, however, does not meet

our definition of a reliable broadcast algorithm because it is possible for a node to not

receive any of these n transmissions.

More intelligent broadcast protocols can be split into three classes: probabilis-

tic, area based, and neighbor knowledge [92]. We considered each class of intelligent

broadcast protocol for use in our application and found that while these algorithms

improve efficiency, none can achieve guaranteed reliability. It is clear that probabilis-
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tic methods will not be appropriate and that area based methods require location

information, which we do not have. The neighbor knowledge methods, however, have

a less obvious failing. This is their reliance on a neighbor table covering one or more

hops. In our experiments, we found that errors in the neighbor table were not uncom-

mon and that these algorithms perform poorly with erroneous neighbor information.

Our final conclusion is that in order to achieve information sharing with guaranteed

reliability, our algorithm cannot rely on a neighbor table.

We refer to our information sharing architecture as GSM because it implements

global shared memory. It is based on the dissemination concept presented in TEP118 [93].

Dissemination, as defined in TEP118, has been implemented by Drip and DIP [94].

These protocols can synchronize data items smaller than a single radio packet be-

tween all nodes in the network. GSM provides this capability as well. However,

dissemination relies on each data item having a predefined unique key. Due to this

requirement, the senders and receivers of data must agree upon unique keys at com-

pile time. This approach would prohibit adding a new sensor to a deployed system

without reprogramming nodes in the network. To solve this problem we assign a

unique key to each data type in the network and extend the dissemination interface

to allow any node to disseminate instances of each data type.

The high-level architecture of GSM is shown in Figure 7.6. The primary com-

ponents are the dissemination engine and the storage subsystem. Received packets

are processed asynchronously to the transmission timer. All radio transmissions are
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initiated from the transmission timer. This approach is used to limit contention in

the network.

The storage subsystem is a generic component that is instantiated with a type key

and maximum size. The component allocates memory for the maximum number of

data items, headers, and metadata. The header contains the 48-bit unique identifier

of the source for the data item, type key, and tag. The unique source identifier plus

tag create a globally unique identifier for each GSM data item. Metadata includes a

version number, last transmission time, and various other flags. The total memory

overhead for each data item is 17 bytes. Interfaces are provided to create, update,

and search for data items. Events are generated when a data item is changed locally

or remotely.

The dissemination engine receives events from both the storage subsystem and

the radio. When a data item is changed by the local node, the version number is

incremented and the data item is flagged for transmission. Each time the transmission

timer is fired a packet is transmitted by the node. If data has changed, or another

node requested a particular item, a data packet is transmitted otherwise a summary

packet is transmitted.

Data packets contain exactly one data item, including the header and version

number. Receiving nodes process data packets and update their storage subsystem, if

needed. Dissemination begins as a flood because each node unconditionally transmits

every updated data items one time. Reliability is ensured by the summary messages.

Summary packets contain the globally unique identifier and version number for

up to 12 data items. Nodes sequentially iterate through all stored data items when

there are more than 12 items available. Receiving nodes process summary packets by

comparing the transmitted version number to the local version number for each data

item. To account for version number wrap-around, the version numbers are compared

using modular arithmetic (i.e., the difference of the version numbers is compared to

half the maximum value of the version type). If a new data item is available, a request
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packet is sent to the source of the summary message at the next transmission event.

If an old data item is detected, the node will retransmit that particular data item at

the next transmission event.

This is a simple protocol that maintains a consistent global shared memory space

across a multihop network. Because nodes transmit a packet every time the transmis-

sion timer fires, specifying the transmission timer becomes critical. If the transmission

timer is fast, latency will be reduced but contention will be likely. To mitigate con-

tention, we apply the desync algorithm [95] to desynchronize the transmission timer

of neighboring nodes. Desync dynamically adjusts the phase of each transmission

timer creating a loose TDMA schedule with no additional overhead.

7.5 Scalability Analysis

There are two primary factors affecting the scalability of the GSM protocol, these

are memory constraints and bandwidth constraints. First, because each node stores a

complete copy of the shared memory space, the available storage space will limit the

size of the shared memory space. In our deployment (Chapter 7.7), sensor readings

are 20 bytes each and the metadata overhead for each data item is 9 bytes. Resulting,

a deployment of 100 sensors would require 2.9KB of memory. Our implementation

stores the shared data in RAM, however, it would be possible to utilize external

flash memory, especially if data was modified infrequently. Because this protocol is

intended primarily for residential BAC systems where there are approximately a few

sensors per room, we do not expect memory to be a limiting factor.

The second factor is the bandwidth available for data transmission. In GSM each

node transmits at a fixed rate (governed by the transmission timer). In the best case

with no packet loss and an ideal TDMA schedule each data item is transmitted once

by each node. The effective data rate for GSM is therefore limited by the time it

takes for every node to transmit each data item once. If we assume each node has

a 20-byte piece of data to report, the transfer rate is only dependent on the report
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Figure 7.7: Maximum data rate for GSM where every node has data to report for
varying transmission timer periods.

interval. Figure 7.7 shows the maximum data rate for GSM under this condition. For

explanation, consider the a case with 10 nodes and a 100 ms transmission timer. In

total there are 200 bytes (10 nodes * 20 bytes / report) of data transferred. Each

node will use 10 transmissions (one for each data item) at the 100 ms timer period,

consuming a total of 1 second. The data rate is therefore, 200 bytes / 1 second. This

is also shown in Equation (7.2), where it is clear that the number of nodes cancel and

the maximum data rate is bound only by the timer period and report size.

Maximum data rate =
20 bytes

report
× 10 nodes

10 nodes× 100 ms
(7.2)

In our deployment the data rate of each sensor is limited to one 20 byte sensor

reading every minute, or effectively 0.33 bytes per second per sensor. The sensor data

rate is shown in Equation (7.3).

Sensor data rate =
20 bytes

60 seconds
(7.3)

The minimum timer period that can support a given number of sensors can be

computed by setting the maximum data rate to the sensor data rate and solving for

the timer period. Equation (7.4) shows this relationship where α is the number of
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Figure 7.8: Minimum required transmission timer rate for GSM to support a given
number of sensors.

sensor nodes and β is the timer period (in seconds). The timer rate is the reciprocal of

the period which yields a linear relationship between the timer rate and the number

of nodes, shown in Figure 7.8.

20 bytes
report

60 seconds
× α nodes =

20 bytes
report

× α nodes

α nodes× β seconds
(7.4)

It is clear from this result that GSM can support hundreds of building sensor

nodes. Even with a relatively slow 1 Hz transmission timer approximately 60 sensor

nodes could be supported. A faster transmission timer will decrease latency and

increase data rate. However, the transmission timer period must always be long

enough so that every node in the one-hop neighborhood can transmit once in the timer

period. For the TelosB platform this requirement is approximately 5 milliseconds per

one-hop neighbor. If we expect no more than 10 one-hop neighbors we could therefore

use up to a 20 Hz transmission timer and support a total of 1,200 sensor nodes in

a single network. One solution to enable even larger networks is to deploy multiple

GSM networks on different radio channels and then replicate relevant data across the

networks.
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7.6 GSM Evaluation

The design of the GSM protocol ensures that every node will eventually synchro-

nize all data items with the most recent values available in the network (i.e., packet

reception rate is guaranteed to be 1, given sufficient time). This is true even when

there are disconnections in the network or a node is reset or added to an active net-

work. This property is necessary for a BAC where reliability is essential. Because

the protocol guarantees the eventual delivery of every data item, the critical metric

is the latency of delivery which we evaluate below.

For all latency measurements, received packets were locally timestamped and every

node received every data item. Clock synchronization is achieved with a simple fast-

flooding protocol initiated by node 1. Synchronization error is on the order of tens

of milliseconds, which is sufficient for monitoring latency on the order of hundreds of

milliseconds per hop.

The transmission timer used has a period of 1 second. Desync was used on each

node to dynamically adjust the phase of the transmission timer. This period was

chosen because the testbeds used have rather dense topologies (average neighbor

count > 25) and the long period reduces the effect of time synchronization errors. In

practice, this period can be significantly shortened to improve performance.

Figure 7.9 shows testbed results where we enforce a linear topology in software

(i.e., nodes only accept packets from adjacent nodes). In (a) node 1 is the only node

sourcing GSM data at a rate of one packet per minute. Every node received every

update from the source node. The outliers for nodes 12, 13, and 14 are due to packet

loss between nodes 11 and 12, however, this loss was detected and these nodes did

synchronize with some additional delay. In general, we expect the latency to increase

approximately linearly. Assuming independent clocks (they are not) and uniform

random arrival times, the expected delay waiting for the transmission time to fire

would be 0.5 seconds. This closely matches the computed average latency of 0.46

seconds per hop in our 13-hop linear network.
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Figure 7.9: Latency in a linear network.

In (b) we configure all 14 nodes to source data at a rate of 1 packet per minute.

Nodes near the ends of the network show higher latency than the nodes in the middle

because, on average, they are further from the source node. The overall latency has

also increased due to queuing delays because only one data item can be transmitted

at a time. If multiple data items need to be transmitted, the dissemination engine

arbitrarily chooses one to transmit, while the others must wait for the next trans-

mission timer event. In these results, the median latency at node 8 was just over 2

seconds. The average hop count at this node was 2.07, resulting in an average latency

of approximately one second per hop.

To explore latency in a more realistic environment, we used the moteLab [96]

testbed. MoteLab is a experimental wireless sensor network deployed in Maxwell

Dworkin Laboratory, the Electrical Engineering and Computer Science building, at

Harvard University. This testbed is particularly relevant to evaluate networking for

a BAC because 2-4 nodes are located in most offices, as we would expect for a wire-

less BAC system. MoteLab contains 184 nodes, but only 73 were available for our

experiments. This is still far more than we would expect in a residential BAC, so

it demonstrates performance for a large BAC deployment. For this experiment, we
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Figure 7.10: Latency (boxplot) and minimum hop count (circles) in moteLab with
node 1 as the source.

again designate node 1 to transmit data at one packet per minute and we verify that

each data item was successfully received by every node in the network. Figure 7.10

shows the resulting latency. Because latency is closely tied to path length, we also

plot the minimum path length from node 1 to the other nodes in the network (paths

with ETX > 4 are discarded). These results show the path length has less effect than

expected. This is likely due to packet delivery along high-loss paths. For example,

nodes 100-120 are all two or three hops from node 1, but the latency of the 3-hop

nodes was only increased by approximately 0.1 seconds when compared to the 2-hop

nodes. Because our previous results show the latency increase approximately 0.5 sec-

onds per hop, we conclude that these nodes are often reachable in two hops, even

though these paths are of poor link quality.

7.7 Deployment

To demonstrate and evaluate the functionality of this architecture, we have imple-

mented three distributed control strategies: occupancy-based control, linked control,

and demand response. For each building sensor node, there is a GSM data item that

stores the most recent readings from the sensor. The sensor nodes use the lpsend pro-

tocol to transmit data to the infrastructure powered automation and control nodes.

These nodes then update the corresponding GSM data item for the sensor.
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Figure 7.11: Temperature and humidity plots.

Figure 7.11 illustrates some of the sensed environmental data interpolated using

Shepard’s method [97]. This interpolation does not take walls into account, but it

enables quick visual inspections of the data. This data could be used by the HVAC

system or simply displayed to the user.

Occupancy-based control detects whole-house occupancy and disables non-essential

devices while the home is unoccupied. Whole-house occupancy detection is deceiv-

ingly simple and reliable using a combination of door and motion sensors. At a

minimum, a single door and motion sensor is required for every exterior door. The

occupancy detection algorithm is implemented locally by each controller in the net-

work. We assume that all exterior doors are closed when the building is unoccupied.

Therefore, the occupancy can only change immediately following an exterior door

close event. After detecting this event event, a 3-minute timer is started. During

this interval the number of motion events received are counted. To minimize false

detections, we use a threshold of 3 or more motion counts in the interval to indicate
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that the building is occupied. In the unlikely event of a misclassification, subsequent

motion events are used to detect the error and operation changes to the occupied

mode [98].

Table 7.3: Power consumed by controlled devices.
Device Standby (W) Active (W)

TV 0 105
Speaker 0 10
Subwoofer 10 15
TV 1 78
DVD Player 0 15

In our deployment we implemented occupancy-based control for two televisions.

Using a P3 Kill-a-watt, we measured the standby and active power of each device,

shown in Table 7.3. Surprisingly, the only device with significant standby power was

the subwoofer. Although this limits the savings due to mitigating standby losses,

savings can still be achieved by avoiding active loads due to devices being left on.

Informally, we have found this to happen with some regularity.

Linked control is useful when several devices are used together. Common examples

are a TV and DVD player or a desktop computer and printer. When one device is

turned on the corresponding linked devices are turned on automatically. This strategy

is even more effective than occupancy-based control at eliminating standby losses

because the duration for which any of these devices is used must be less than the

time the home is occupied. In our deployment, the powered speaker and subwoofer

were linked to one TV while the DVD player was linked to the other TV. Because

the televisions implement occupancy-based control, these devices inherit this control

strategy as well. Including the additional load created by each controller (0.25 watts),

automating these devices with occupancy and linked control decreases the standby

losses by 88% from 11 watts to 1.25 watts. When devices are unintentionally left

on, this savings is significantly increased. Based on typical occupancy and usage

schedules, we expect a savings of 195 watt hours per day, or 71 kWh per year.
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Our implementation of demand response assigns a priority to each device. A

demand response event is initiated by a node updating a GSM demand data item

with a priority and duration of the event. All nodes in the network receive this data

item and devices of lower priority are disabled for the designated duration. Demand

response is useful to help utilities balance generation and demand. Because we did

not have access to utility demand and generation data, we were not able to evaluate

this feature beyond verifying the functionality.

To quantify the expected savings using these control strategies for the average

home, we use data from the Building America Research Benchmark for miscellaneous

electrical loads [99] . This data includes information regarding standby power con-

sumption, operating times, and house occupancy information. If the occupancy-based

control strategy was applied to home office and home entertainment devices in the

benchmark, the energy consumption of these devices would be reduced by 10%. Em-

ploying both occupancy and linked control to these devices results in a 17.5% savings.

The total reduction on whole-house energy consumption using both control strategies

is expected to be 2.3%, or 182 kWh, per year per household. Nationwide, assuming

50% penetration, this would reduce energy consumption by 0.04 quads per year (the

total energy consumption for buildings in the US is approximately 20 quads per year)

and yield a savings of 1.5× 1010 pounds of CO2.

7.8 Chapter Summary

This chapter presented the complete implementation of a reliable distributed BAC

system using a custom wireless platform and protocols. By separating the tasks of

sensing and controlling, we are able to leverage the availability of infrastructure power

to create a reliable mesh-network core with ultra-low powered sensing nodes. Building

state information is synchronized between all nodes in the network creating a global

shared memory space. Reliability is guaranteed by the network protocol, even when

nodes are added or removed. Because control decisions are made locally by each
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node, the system has no single point of failure and can be expanded at any time.

Testbed results show typical latency is less than 0.5 seconds per hop and depending

on network topology, higher performance is possible. The average expected energy

savings by applying this control approach to home entertainment and home office

equipment is 17.5%, resulting in a whole-house energy reduction of 2.3%. Because

this architecture is fully open and distributed, evolving deployed systems to include

new automation and control strategies enables existing sensors to be leveraged for

increased energy savings.
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CHAPTER 8

CONCLUSIONS AND FUTURE WORK

In this thesis we have explored the use of wireless sensor networks to develop

a new class of distributed building automation and control systems. The central

idea is to wirelessly share sensed building information. Shared building information

could include simple measurements (e.g., temperature, humidity, light), computed

device-level state information (e.g., TV on, dishwasher running). Individually these

separate bits of information have limited uses but when viewed together they enable

very detailed analysis of building state and occupant behaviors. The wireless sensor

network is the critical component to enable this detailed analysis. Our approach is

vastly different than systems that rely on wired or wireless sensors to communicate

data to a central controller. Because control decisions are made at the point of control,

it is possible to develop systems that automatically adapt to a wide range of building

parameters.

8.1 Summary of Dissertation Research

Chapter 3 presents two approaches for circuit-level energy disaggregation. Whole-

home energy measurement is cheap and easy to set up because only one sensor is

placed where the home connects to the power grid. The collected data can provide

useful information for large appliances. However, the only way to monitor the energy

usage of smaller devices is to install an energy meter on every device of interest.

This creates a very detailed picture of household energy consumption, but requires a

lot of additional hardware – one meter per device in the home. We have developed

and evaluated two algorithms to disaggregate the circuit-level data into device-level

estimates.

Chapter 4 describes PIM-WSN, the first general purpose multicast protocol for

IPv6 wireless sensor networks. Multicast is one approach to share sensor information

113



between building systems. However, existing solutions for multicast in WSNs are

limited because they either support multicast only from a single source node (usually

the root node) or they limit the multicast group size to constrain memory usage.

Our design allows any node to be a mulitcast source with an unlimited number of

subscribers. We constrain the memory usage by approximating multicast group mem-

bership using a fixed sized Bloom filter. The efficiency of the protocol degrades as the

false positive rate of the Bloom filter increases; however, correct operation is always

maintained. Using detailed simulations we show that PIM-WSN achieves 1) high

packet delivery rate (over 97%), 2) low latency per hop (less than 5 ms), and 3) lower

radio utilization than all other comparable protocols (by more than 50%). Using a

ten-hop testbed of TelosB motes we have verified our implementation of PIM-WSN

for TinyOS 2.x with the Blip IPv6 networking stack which uses only 5,978 bytes of

ROM and 235 bytes of RAM.

Chapter 5 explores the quantitative effect of occupant behaviors on building energy

consumption. To do this we have evaluated eight energy-saving behaviors, as well as

the use of an in-home display (IHD), in ten homes over the course of ten weeks.

The results showed maximum savings ranging from 0%-20% attributed to the IHD.

Additionally, we found evidence that automation is necessary to ease the more tedious

tasks such as “unplug when not in use” and “unplug the TV,” where less than half

of the participants performed the action.

Chapter 6 illustrates how a distributed BAC system can be built using PIM-WSN.

We propose a general framework where building systems can share information in or-

der to optimize performance. To be successful, such a system must be responsive,

intuitive, robust, and scalable. Using protocol independent multicast, sensors and

controllers are allowed to efficiently share information in a distributed peer-to-peer

fashion. Our prototype system achieved an energy savings of 7.1% - 14.6% by imple-

menting an occupancy-based control policy.
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Chapter 7 concludes by describing the specialized WSN sensor nodes developed

specifically to implement distributed BAC and a global shared memory abstraction

for reliably sharing sensed building information. The global shared memory approach

guarantees the eventual synchronization of data in the network addressing potential

reliability problems with PIM-WSN. This approach will enable the development of

off-the-shelf automation systems that can be reliably deployed and used by the typical

homeowner. In our study, we observed an 88% reduction in standby losses for a home

entertainment system. Using published statistics on home entertainment and home

office systems, we expect this approach, on average, to reduce energy consumption of

these devices by 17%, or equivalently a 2.3% reduction in whole-house energy con-

sumption. This work provides a general purpose distributed automation and control

framework that can be extended to implement other energy saving measures such as

intelligent lighting and adaptive HVAC systems.

8.2 Future Research Directions

There are several remaining challenges described below to fully realize the poten-

tial presented by this architecture.

Protocol efficiency for GSM needs to be studied further. The current implemen-

tation was designed for low data rate applications, such as building monitoring,

where the sensors transmit one packet per minute. Other applications may

require higher data rates. To achieve higher data rates, modification to the

GSM protocol will be required. One possible improvement is to develop a pri-

ority transmission scheme to estimate the impact of sending each data item.

For example, if a node overhears a data item transmitted by each of its known

neighbors, it is unlikely to reach a new node if transmitted, so it would be as-

signed a low priority. Conversely, if a node has a new data item that has been

transmitted by a minority of its neighbors, that item would be assigned a high
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priority. An extension of this idea is to modify the TDMA approach to include

a contention window where nodes could transmit high priority data before their

scheduled transmission time. This could be especially useful at decreasing the

end-to-end latency in large networks while still maintaining the high reliability

of GSM.

Energy harvesting sensor nodes are essential to developing a user friendly sys-

tem. Many indoor energy harvesting technologies have been studied includ-

ing: solar, piezoelectric, vibration, thermoelectric, and acoustic. Of these, so-

lar provides the highest power density and is the most cost effective solution.

Monocrystalline silicon cells can provide 25% efficiency under ideal conditions,

however, indoor lighting causes their efficiency to drop to 10% at 50 lux [100].

Typical residential indoor light levels range between 1 and 100 lux and we have

found that the sensor node consumes approximately 12 Joules per day. At 50

lux and 10% cell efficiency, a 6 square inch cell would generate this amount

of energy in less than one hour. The significant challenge is to develop power

control strategies that adapt the operation of the sensor node to the current

and predicted lighting conditions.

Energy storage also needs to be considered for the energy harvesting sensor node.

One possible solution is to use an ultracapacitor. Long-life ultra-capacitors are

readily available that reliably support millions of charge-discharge cycles, where

most batteries would need replacement after fewer than 1,000 cycles. When fully

charged, a 10 Farad ultra-capacitor could power the sensor node for up to 24

hours with no additional charging. Coupled with indoor solar charging, and

adaptive power control strategies, we expect this solution to provide continuous

power under typical indoor lighting conditions.
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Additional building automation strategies have also been explored by other re-

searchers. Those expected to yield the highest energy savings are HVAC control

(28% reduction [76]) and lighting control. Our architecture provides a unifying

framework capable of integrating many different automation and control strate-

gies with a common platform. New sensors and actuators will be developed to

implement these capabilities.

Traditional distributed control problems, such as industrial process control, would

also benefit from wireless sensor networks. Because distributed control systems

require reliable communication for stable operation, GSM is an appropriate solu-

tion. WirelessHART [12] is a currently available wireless solution for industrial

process control that uses centralized coordination for wireless communication.

In comparison, GSM is fully distributed with no central controller. A thorough

comparison of these two approaches for industrial process control would provide

valuable insights.
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LIST OF ABBREVIATIONS

AC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Alternating Current

ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . Analog to Digital Converter

ADMR . . . . . . . . . . . . . . . . . Adaptive Demand-driven Multicast Routing

BAC . . . . . . . . . . . . . . . . . . . . . . . . Building Automation and Control

BAM . . . . . . . . . . . . . . . . . . . . . . . . . . Branch Aggregation Multicast

BAS . . . . . . . . . . . . . . . . . . . . . . . . . . . Building Automation System

BMS . . . . . . . . . . . . . . . . . . . . . . . . . . . Building Management System

CFL . . . . . . . . . . . . . . . . . . . . . . . . . . . . Compact Fluorescent Light

CH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Chauvenet Hall

CPM . . . . . . . . . . . . . . . . . . . . . . . . . . . Closest-Fit Pattern Matching

CPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Central Processing Unit

CRC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Cyclic Redundancy Check

CT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Current Transformer

CTP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Collection Tree Protocol

DAG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Directed Acyclic Graph

DC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Direct Current

DCOCLK . . . . . . . . . . . . . . . . . . . . Digitally Controller Oscillator Clock

DCO . . . . . . . . . . . . . . . . . . . . . . . . . . . Digitally Controller Oscillator

DOE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Department Of Energy

DOW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Day Of week

DVD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Digital Versatile Disc
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EIA . . . . . . . . . . . . . . . . . . . . . . . . . Electronic Industries Association

EPRI . . . . . . . . . . . . . . . . . . . . . . . . Electric Power Research Institute

ETX . . . . . . . . . . . . . . . . . . . . . . . . . . . Expected Transmission Count

FRM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Free Riding Multicast

FTSP . . . . . . . . . . . . . . . . . . . . Flooding Time Synchronization Protocol

GPIO . . . . . . . . . . . . . . . . . . . . . . . . General Purpose Input/Output

GSM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Global Shared Memory

HTTP . . . . . . . . . . . . . . . . . . . . . . . . . . HyperText Transfer Protocol

HVAC . . . . . . . . . . . . . . . . . . Heating, Ventilating, and Air Conditioning

IC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Integrated Circuit

ID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Identification

IEC . . . . . . . . . . . . . . . . . . . . International Electrotechnical Commission

IEEE . . . . . . . . . . . . . . . . Institute of Electrical and Electronics Engineers

IHD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . In-Home Display

IP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Internet Protocol

KB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Kilobyte

LCD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Liquid Crystal Display

LQI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Link Quality Indicator

MAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Media Access Control

MANET . . . . . . . . . . . . . . . . . . . . . . . . . . . . Mobile Ad-Hoc Network

MCU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Microcontroller

MIPS . . . . . . . . . . . . . . . . . . . . . . . . . Million Instructions Per Second

MOLSR . . . . . . . . . . . . . . . . . . . Multicast Optimized Link State Routing
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MOSPF . . . . . . . . . . . . . . . . . . . . . Multicast Open Shortest Path First

MPR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Multipoint Relay

NEMA . . . . . . . . . . . . . . . . . National Electrical Manufacturers Association

NILM . . . . . . . . . . . . . . . . . . . . . . . . . Non Intrusive Load Monitoring

NP . . . . . . . . . . . . . . . . . . . . . . . . . . . . Nondeterministic Polynomial

NRDC . . . . . . . . . . . . . . . . . . . . . . . Natural Resources Defense Council

NREL . . . . . . . . . . . . . . . . . . . . National Renewable Energy Laboratory

OLSR . . . . . . . . . . . . . . . . . . . . . . . . . Optimized Link State Routing

OS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Operating System

OSPF . . . . . . . . . . . . . . . . . . . . . . . . . . . . Open Shortest Path First

PC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Personal Computer

PDA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Personal Digital Assistant

PDR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Packet Delivery Ratio

PIM . . . . . . . . . . . . . . . . . . . . . . . . . . Protocol Independent Multicast

PIR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Passive Infrared

PLC . . . . . . . . . . . . . . . . . . . . . . . . . . Programmable Logic Controller

PPM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Packets Per Minute

PRISM . . . . . . . . . . . . . . . . . . . . . . . . Princeton Scorekeeping Method

RAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Random Access Memory

RBP . . . . . . . . . . . . . . . . . . . . . . . . . . Robust Broadcast Propagation

RFC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Request For Comment

ROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Read Only Memory

RPL . . . . . . . . . . . IPv6 Routing Protocol for Low power and Lossy Networks
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RRQ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Read Request

RSSI . . . . . . . . . . . . . . . . . . . . . . . . Received Signal Strength Indicator

RTOS . . . . . . . . . . . . . . . . . . . . . . . . . . Real Time Operating System

RX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Receive

SCADA . . . . . . . . . . . . . . . . . . Supervisory Control And Data Acquisition

SCLK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . System Clock

SNR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Signal-to-Noise Ratio

SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Serial Peripheral Interface

SSDP . . . . . . . . . . . . . . . . . . . . . . . Simple Service Discovery Protocol

SSM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Source Specific Multicast

TDMA . . . . . . . . . . . . . . . . . . . . . . . . . Time Division Multiple Access

TEP . . . . . . . . . . . . . . . . . . . . . . . . . . . . TinyOS Extension Proposal

TFTP . . . . . . . . . . . . . . . . . . . . . . . . . . Trivial File Transfer Protocol

TOSSIM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TinyOS SIMulator

TX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Transmission

UDP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . User Datagram Protocol

USART . . . . . . . . Universal Synchronous/Asynchronous Receiver/Transmitter

USB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Universal Serial Bus

US . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . United States

VAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Volts Alternating Current

VAR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Volt Ampere Reactive

WPAN . . . . . . . . . . . . . . . . . . . . . . . . Wireless Personal Area Network

WRQ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Write Request

WSN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Wireless Sensor Network
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