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ABSTRACT
Phylogenetic tree constructions are important for under-
standing evolution and species relatedness. Most methods
require a multiple sequence alignment (MSA) to be per-
formed prior to inducing the phylogenetic tree. MSAs, how-
ever, are computationally expensive and increasingly error
prone as the number of sequences increase, as the average
sequence length increases, and as the sequences in the set be-
come more divergent. We introduce a new method called ng-
Phylo, an n-gram based method that addresses many of the
limitations of MSA-based phylogenetic methods, and com-
putes alignment-free phylogenetic analyses on large sets of
proteins that also have long sequences. Unlike other meth-
ods, we incorporate the use of standard substitution matri-
ces to improve similarity measures between sequences. Our
results show that highly similar phylogenies are produced
to existing MSA-based methods with less computational re-
sources required.
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1. INTRODUCTION
Phylogenetic analyses, specifically phylogenetic tree con-

structions, are important for understanding evolution and
species relatedness. Currently, there are two main categories
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for constructing phylogenetic trees. Character-based meth-
ods, such as maximum parsimony [4] and maximum likeli-
hood [3], require sequences to be of equal length, and there-
fore usually require a multiple sequence alignment (MSA)
to be completed prior to analysis. Distance-based methods,
such as UPGMA and neighbor joining methods, require a
pair-wise distance matrix to be computed between all pairs
of sequences. Like character-based methods, an MSA is used
to infer distances between sequences.

Though performing an MSA is the standard first step for
phylogenetic analysis, they have restrictions. The compu-
tational resources required to run an MSA is dependent on
the number and length of the sequences aligned. Moreover,
the accuracy of the alignment decreases in proportion to the
number of sequences [8].

Alignment-free techniques have been employed, most which
capitalize on analyzing distributions of fixed-length subse-
quences called n-grams. First proposed by Blaisdell in 1986
[1], the frequency and/or entropy of the n-grams have been
used as feature vectors to compute a distance. Once the
distances have been computed, the phylogenetic tree can be
constructed using one of the distance based methods men-
tioned above.

Our method is a n-gram based approach that uses a spec-
ified substitution matrix to compute a biologically relevant
measure of similarity between n-grams. A substitution ma-
trix allows for matching of biologically similar n-grams. This
provides a more meaningful phylogenetic distance calcula-
tion between sequences, and thus addresses limitations of
strict n-gram matching used by existing alignment-free meth-
ods.

2. METHODS AND MATERIALS

2.1 N-Gram Model of a Protein
Each analyzed protein sequence, S, is converted to a fre-

quency vector, freqS where each index in the vector rep-
resents the count of a specific n-gram occurring in S. An
n-gram is defined as an overlapping subsequence of length n
from an amino acid sequence. The frequency vector, freqS ,
includes the count for all possible amino acid combinations

of size n. Therefore, |freqS | = 20n, and
∑20n

i=1 freqS [i] =
length(S)− n + 1.

2.2 Distance Computation and Tree Construc-
tion

The distance M between two arbitrary n-grams, denoted
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wa and wb, is computed as follows:

M(wa, wb) =

n∑
i=1

(score(wa[i], wb[i])

where score(wa[i], wb[i]) is the substitution matrix value be-
tween the amino acids at index i in the n-grams being com-
pared.

A standardized similarity score Sim between sequences Si

and Sj is computed in two phases. In phase one, we process
all identical n-grams from Si and Sj , decrement matched n-
grams in freqSi and freqSj and update Sim accordingly. In
phase two, we consider the remaining non-identical n-gram
matches between Si and Sj . We create a bipartite graph,
where one set of nodes represent the remaining n-grams in
Si, denoted as wi1, ...wit; the nodes in the other set are
those from Sj , denoted as wj1, ...wjv. For all pairs of nodes,
an undirected, weighted edge, E(wim, wjp) is created if and
only if M(wim, wjp) > 0. Edges are ordered by descend-
ing weight. The heaviest edge, E(wi∗, wj∗) is removed, its
weight is added to Sim(Si, Sj), and nodes wi∗ and wj∗ are
removed from each set (implying that all edges connected to
wi∗ and wj∗ also are removed.) Edges are processed in this
fashion until there are no more edges in the graph.

Finally, we standardize all Sim calculations to represent
a distance:

dist(Si, Sj) = 1− Sim(Si, Sj)−minSim(Si, Sj)

maxSim(Si, Sj)−minSim(Si, Sj)

The result is a complete distance matrix for all pairs of pro-
tein sequences. The phylogenetic trees were induced from
the distance matrix using hierarchical clustering with single
linkage updating.

2.3 Data
Three protein datasets were used for this study. D1, a

dataset of long, divergent proteins, is composed of 13 G-
protein coupled receptor 98 proteins from a variety of ani-
mals. Each is over 6000 amino acids. D2, a dataset of rela-
tively short, divergent sequences, contains 21 serum albumin
proteins that are about 630 amino acids. D3, a large dataset
of divergent proteins, consists of 200 prokaryote DNA gyrase
subunit A sequences, each of which is about 875 amino acids.

3. RESULTS
We compared our method against ClustalW2 [5], Clustal

Omega [7], and MUSCLE [2] using the default parameters.
For our method, we used n = 3 for the n-gram length.
This value was chosen for computational efficiency, and be-
cause we observed very minor improvement in tree quality
for higher values of n. All methods were run three times un-
der identical load conditions on the same system to reduce
the variability due to the operating system.

Our results show that ngPhylo performed quite well against
the MSAs. We also created a random tree with identical la-
bels The phylogenetic trees produced by each method were
compared against each other using the perl program TOPD
[6] with the nodal analysis method [9] (Table 1).

The trees produced with ngPhylo compare well with those
from ClustalW2, Clustal Omega, and MUSCLE. This is true
for all datasets. ngPhlyo showed significant improvement in
time for generating phylogenetic trees from D1. However, it
showed no improvement in time for D2 and D3.

Table 1: Nodal Analysis for Dataset D1

ngPhylo Clustal Ω ClustalW2 MUSCLE
ngPhylo
Clustal Ω 1.144
ClustalW2 0.716 1.240
MUSCLE 0.716 1.240 0.000
Random 2.684 2.833 2.455 2.455

4. DISCUSSION
Unlike many MSAs, our method is not limited by the

number and length of sequences being analyzed. Also, our
method would be able to applied to proteomes. This is not
possible to do with MSAs because you cannot align a col-
lection of proteins for one organism.

The ngPhylo method is currently implemented in Java,
thus inherently slower than others written in C++. Even
with this difference in speed due to programming language,
the computational speed-up is encouraging. We are in the
process of converting and optimizing the algorithm in C++.
Also, we want to compare the results of our method on pro-
teomes against existing studies. Finally, we plan to use the
n-gram frequency and their index positions to determine
which sections of a protein are less conserved.
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