Homework #7 — due Friday, March 22

Numbers refer to the problems in Griffiths

From Friday, March 8:

- $1.\ 10.5$
- $2.\ 10.6$
- 3. 10.7

From Monday, March 18:

4. 10.10 **Problem E**

Let's derive the Green's function for the d'Alembertian operator. We will assume the answer, namely

$$f(\mathbf{r}, \mathbf{r}', t, t') = \frac{1}{4\pi\pi} \delta(t - \pi/c)$$

and then show it is the solution to the equation $\Box^2 f(\mathbf{r}, \mathbf{r}', t, t') = -\delta^{(3)}(\mathbf{n})\delta(t-t').$

To do this, evaluate $\nabla^2 f$, using the product rule $\nabla^2(gh) = g\nabla^2 h + 2\nabla g \cdot \nabla h + h\nabla^2 g$, with $g = \frac{1}{4\pi\hbar}$ and $h = \delta(t - \hbar/c)$.

- (a) Show that $h\nabla^2 g = -\delta^{(3)}(\mathbf{n})\delta(t-t')$. Note that in the term $\delta^{(3)}(\mathbf{n})\delta(t-\mathbf{n}/c)$ we can set $\mathbf{n} = 0$ in the time delta function because it's multiplied by $\delta^{(3)}(\mathbf{n})$.
- (b) Evaluate the other two terms. For derivatives of the δ function you can take, e.g., $\nabla \delta(t - \pi/c) = \delta'(t - \pi/c) \nabla(-\pi/c)$. Simplify as much as possible.
- (c) Show that you end up getting the Green's function equation above.
- $5.\ 10.12$

From Wednesday, March 20:

- 6. 10.14
- $7.\ 10.25$