PHYS 334 Electromagnetic Theory II

In Class Exercise 2 — January 19, 2024

Name: Solutions

1. For charging parallel circular plates, with $Q(t) = \pm It$, find (a) the electric field in between the plates, and (b) find the integral of $\int \frac{\partial \mathbf{E}}{\partial t} \cdot d\mathbf{a}$ over a surface that sits in between the two plates.

2. Given the definition $\mathbf{D} = \epsilon_0 \mathbf{E} + \mathbf{P}$, show that Gauss's law can be written as $\nabla \cdot \mathbf{D} = \rho_f$.

not class