PHYS 334 Electromagnetic Theory II

In Class Exercise 14 — February 21, 2024

Name: Solutions

1. (a) Given $\mathbf{k}_I \cdot \mathbf{r} = \mathbf{k}_R \cdot \mathbf{r} = \mathbf{k}_T \cdot \mathbf{r}$, consider a point on the boundary (x, y, z) = (0, y, 0). What does this equation become? If this has to hold for all values of y, what does this imply?

$$k_{I,Y} y = k_{R,Y} Y = k_{T,Y} Y \quad \text{valid for all y}$$

$$\Rightarrow \left[k_{I,Y} = k_{R,Y} = k_{T,Y} \right]$$

(b) If you were to consider a point on the boundary (x, 0, 0) and require it to hold for all x, what would this imply?

$$k_{I,x} = k_{R,x} = k_{T,x}$$

2. Write $k_{I,x} = k_{R,x} = k_{T,x}$ in terms of the magnitudes k_I , k_R , and k_T and the angles θ_I , θ_R , and θ_T . Given that $k_R = k_I$ and $k_T = \frac{n_2}{n_1}k_I$, what can you conclude?

key= he side Kty = ky Side KIX = HI SIA

Since $k_I = k_R \Rightarrow cos \theta_I = cos \theta_R \Rightarrow \theta_R = \theta_I$

lef= 12 hz =>