Review Worksheet for Exam 1

- 1. Starting from Maxwell's equations, derive the continuity equation for charge conservation: $\frac{\partial \rho}{\partial t} = -\boldsymbol{\nabla} \cdot \mathbf{J}.$
- 2. A free surface charge density σ_f is distributed along the x-y plane. Above the plane is a linear medium with dielectric constant ϵ_1 and below the plane is a linear medium with dielectric constant ϵ_2 .

The free charge density is exactly the right amount such that there is no discontinuity in the electric field, that is, $\mathbf{E} = E_0 \hat{\mathbf{z}}$ everywhere in space. Find σ_f .

3. Two concentric cylinders have radii a and b, with a < b. The inner cylinder carries a current I in the \hat{z} direction along the surface of the cylinder. The outer cylinder contains along its surface a charge λ per unit length.

- (a) Find the **E** and **B** fields in each of three regions (i) s < a, (ii) a < s < b, and (iii) s > b.
- (b) Find the Poynting vector in each of the three regions.
- (c) Find the electromagnetic energy stored in the region a < s < b.
- 4. The Maxwell stress tensor is

$$T_{ij} = \frac{1}{2}\epsilon 0 \left(E_i E_j - \frac{1}{2}\delta_{ij} E^2 \right) + \frac{1}{2\mu_0} \left(B_i B_j - \frac{1}{2}\delta_{ij} B^2 \right)$$

Consider a solenoid with magnetic field $\mathbf{B} = \mu_0 n I \hat{\mathbf{z}}$ inside. Find all nine elements of the stress tensor for the region inside the solenoid, and express your answer in matrix form.

5. A parallel plate capacitor with separation d has charge densities σ and $-\sigma$ as shown. Inside the plates is a solenoid with radius R, carrying current I through N turns per unit length. The solenoid has length $\ell \gg R$.

- (a) Find E and B everywhere (specify each region as necessary). Assume that the parallel plates extend to infinity, and the fringing of the B field at the ends of the solenoid is negligible.
- (b) Find the Poynting vector **S**.
- (c) Calculate the **total** momentum \mathbf{p} for a length L of the solenoid.
- (d) If the current is gradually turned off, what force per length (magnitude and direction) is needed to keep the solenoid in place? Use $\mathbf{F} = d\mathbf{p}/dt$. (Any guesses as to where the opposing force comes from?)
- 6. Consider an infinite cylinder of radius R, centered along the z-axis as shown. The interior of the cylinder is magnetized with field $\mathbf{M} = M \hat{\mathbf{z}}$, and a uniform free current density $\mathbf{J}_f = J_f \hat{\mathbf{z}}$ flows.

- (a) Use Ampere's equation in matter to find **H** in the cylinder.
- (b) Find **B** in the cylinder.