Physics 331 Advanced Classical Mechanics Fall 2010

Problem A

We will study the phenomenon of period doubling of the driven damped pendulum. For parameters,
take w = 2m, wy = 37, and [ = 37 /4, and the initial conditions ¢(0) = 0 and ¢(0) = 0.

(a) Start with v = 1.06, and solve the equation with NDSolve over the time range t = 0 to 50.
Store your solution in a variable, that is, soln = NDSolvel[ ...]

Now you can plot the function via Plot[¢[t] /. soln, {t, 0, 50}]
Change the plot range to a narrower time window at sufficiently late times and determine
whether the period is equal to 1, 2, 4, ... (like in Fig. 12.8). Print out this plot.

(b) Now do the problem again, but with v = 1.078. You may want to plot a horizontal line near
the top or bottom of the oscillator’s range to highlight differences. You can do this by adding
a constant “function” to plot, i.e. Plot [{¢[t] /. soln, -1.452}, {t,...}].

(c) Now do the same for v = 1.081.

(d) Now do the same for v = 1.835.

Problem B

We will make a bifurcation diagram for the driven damped pendulum, I had originally intended to
make a template, but I think it’ll be more fun if you program your own. Here’s the steps:

1. Define eqn = the differential equation, with w = 27, wy = 3w, and § = 37/4. Be sure to
leave v as an uspecified variable.
2. We want to grow a list of (v, ¢) pairs, so we need to start with an empty list. Type
list = {}
3. Now we want to set up a for-loop to go from v = 1.06 to v = 1.087 in steps of size 0.0001. As
an example, the for-loop syntax to take x from 1 to 10 in steps of 0.1 would be:
For[x=1, x<=10, x+=0.1, expressions]
Here expressions is as many mathematica expressions as you want, separated by semicolons

(and carriage returns usually, for readability).

4. In the expressions part of the for-loop you will have three expressions. The first is the
numerical solution command. Initially, just take the time range to be 0 to 20 until you have
everything working. You need to set step limit to infinity, via

soln = NDSolve[ ... {t, 0,20}, MaxSteps — Infinity].



5. The second expression does the strobe light: it extracts a set of ¢ values at the driving period,
using the Table function. Let me just give you the syntax:

newlist = Table[{ v, ¢[t]/.soln[[1]] }, {t, 10,20, 1}];
This would extract the values from ¢ = 10 to 20 in increments of 1.
6. The third expression adds the new (7, ¢) values stored in newlist to the ever-growing list,
via the command
list = Union[list, newlist]
7. Be sure to close up your for-loop with the closing square bracket and see if this runs. If it
completes sucessfully, you can plot your data with
ListPlot[list, PlotStyle—PointSize[Small]]
8. Your plot probably looks bad, but if it has a bunch of points with the horizontal range between

v = 1.06 and 1.087, you're probably in good shape. If not, be sure to empty the 1ist variable
again before re-trying.

9. Once it is looking decent, empty the list, increase the NDSolve solution out to time ¢ = 400,
and in the Table command, extract the values from ¢ = 300 to ¢ = 400.

On a linux machine, this longer run takes around a minute. It might be a bit slower on
Windows, but hopefully in that ballpark.

In principle, you should now have a beautiful bifurcation diagram. Please print out your whole
notebook (perhaps after tidying it up) and not just the plot.



