KNELL UNIVERSITY

Computer Science
CSCI 315 Operating Systems Design

Processes

Notice: The slides for this lecture have been largely based on those accompanying an earlier edition
of the textbook Operating Systems Concepts with Java, by Silberschatz, Galvin, and Gagne. Many, if
not all, the illustrations contained in this presentation come from this source.

1/29/2010 CSCI 315 Operating Systems Design

Process Concept

* Process — a program
in execution; process
execution must

heap

progress in sequential

fashion. stack

* A process includes: e
— program counter,

- StaCk, program counter
— data section. code

1/29/2010 CSCI 315 Operating Systems Design

Process Control Block (PCB)

OS bookkeeping information

associated with each process:

process id
* Process state, process state
* Program counter, program counter
» CPU registers,
+ CPU scheduling information, registers

» Memory-management information,

L . memory limits
» Accounting information,

+ |/O status information, list of open files

1/29/2010 CSCI 315 Operating Systems Design

Process State Transition Diagram

terminated

scheduler dispatch

/O or event completion /O or event wait

1/29/2010 CSCI 315 Operating Systems Design

Process Scheduling Queues

» Job queue - set of all processes in the system.

* Ready queue — set of all processes residing in
main memory, ready and waiting to execute.

» Device queues — set of processes waiting for
an |/0O device.

Processes migrate between the various queues.

1/29/2010 CSCI 315 Operating Systems Design

1/29/2010

Processes and OS Queues

queue header PCB, PCB,
ready head > - —=
queue tail o registers registers
- — -_-.-\//
tape o
unito tail T
:';ag head —
unifl tail | — PCB, PCB,, PCB,
- 1) +—
disk head 4
unit O tail
PCB,
terminal head =
unito w4

CSCI 315 Operating Systems Design

Schedulers

» Long-term scheduler (or job scheduler) —
selects which processes should be
brought into the ready queue

» Short-term scheduler (or CPU scheduler)
— selects which process should be
executed next and allocates CPU

1/29/2010 CSCI 315 Operating Systems Design

Schedulers

» Short-term scheduler is invoked very frequently
(milliseconds) = (must be fast)

* Long-term scheduler is invoked very infrequently
(seconds, minutes) = (may be slow; controls the degree
of multiprogramming)

* Processes can be described as either:

— /O-bound process — spends more time doing I/O than
computations, many short CPU bursts

— CPU-bound process — spends more time doing computations
few very long CPU bursts

1/29/2010 CSCI 315 Operating Systems Design 8

Context Switch

» When CPU switches to another process, the
system must save the state of the old process
and load the saved state for the new process.

» Context-switch time is overhead; the system
does no useful work while switching.

» Time dependent on hardware support.

1/29/2010 CSCI 315 Operating Systems Design

Process Creation

* Parent process create children processes, which, in turn
can create other processes, forming a tree of processes.

* Resource sharing:
— Parent and children share all resources,
— Children share subset of parent’s resources,
— Parent and child share no resources.

* Execution:
— Parent and children execute concurrently,
— Parent may wait until children terminate.

1/29/2010 CSCI 315 Operating Systems Design 10

10

Process Creation (Cont.)

» Address space:
— Child has duplicate of parent’s address space, or
— Child can have a program loaded onto it.

* UNIX examples:

— fork system call creates new process and returns
with a pid (O in child, > O in the parent),

— exec system call can be used after a fork to replace
the process’ memory space with a new program.

1/29/2010 CSCI 315 Operating Systems Design

1

11

Process Termination

* Process executes last statement and asks the operating
system to terminate it (exit)
— Output data from child to parent (via wait)
— Process’ resources are deallocated by operating system

* Parent may terminate execution of children processes
(abort) if:
— Child has exceeded allocated resources,
— Task assigned to child is no longer required,

- If parent is exiting (some operating system do not allow child to
continue if its parent terminates)
— All children terminated - cascading termination

1/29/2010 CSCI 315 Operating Systems Design 12

12

Cooperating Processes

» Anindependent process cannot affect or be
affected by the execution of another process.

» A cooperating process can affect or be affected
by the execution of another process.

» Advantages of process cooperation:
— Information sharing,
— Computation speed-up,
— Modularity,
— Convenience.

1/29/2010

CSCI 315 Operating Systems Design 13

13

Producer-Consumer Problem

A paradigm for cooperating processes in which a producer
process produces information that is consumed by a
consumer process:

— unbounded-buffer places no practical limit on the size of the
buffer,

— bounded-buffer assumes that there is a fixed buffer size.

resource

producer buffer

1/29/2010 CSCI 315 Operating Systems Design 14

14

Bounded-Buffer

(shared-memory solution)

import java.util.*;
public s BoundedBuffer implements Buffer

¢ {

/' producers call this method te static final int BUFFER SIZE = 5-

public abstract void insert{Object rivate nt; // number of items in the buffe
item): s to the next free

public interface Buffer

Object[] buffe
I/ consumers call this method BoundedBuffer() {
{1 buffer is initially empty
count=
in=0;
out=0;
buffer = new Object|BUFFER SIZE];

public abstract Object remove();

ethod

1/29/2010 CSCI 315 Operating Systems Design 15

Bounded-Buffer

(shared-memory solution)

public void insert(Object item) {

while (count == BUFFER SIZE); // do nothing -- no free buffers
// add an item to the buffer

++count;

bufferfin] = item;

in=(in + 1) % BUFFER SIZE;

1/29/2010 CSCI 315 Operating Systems Design

16

16

Bounded-Buffer

(shared-memory solution)

public Object remove() {
Object item;
while (count == 0); // do nothing -- nothing to consume
/I remove an item from the buffer
--count;

item = buffer[out];
out = (out + 1) % BUFFER SIZE;
return item;

1/29/2010 CSCI 315 Operating Systems Design

17

17

Interprocess Communication
(IPC)

+ Mechanism for processes to communicate and to synchronize their
actions
+ Message system — processes communicate with each other without
resorting to shared variables
« |PC facility provides two operations:
— send(message) — message size fixed or variable
— receive(message)
« If P and Q wish to communicate, they need to:
— establish a communication link between them
— exchange messages via send/receive
+ |mplementation of communication link
— physical (e.g., shared memory, hardware bus)
— logical (e.g., logical properties)

1/29/2010 CSCI 315 Operating Systems Design 18

18

Implementation Questions

* How are links established?

» Can alink be associated with more than two
processes?

* How many links can there be between every pair
of communicating processes?

» What is the capacity of a link?

* |s the size of a message that the link can
accommodate fixed or variable?

* |s a link unidirectional or bi-directional?

1/29/2010 CSCI 315 Operating Systems Design 19

19

Direct Communication

* Processes must name each other explicitly:
— send (P, message) — send a message to process P
— receive(Q, message) — receive a message from process Q

* Properties of communication link
— Links are established automatically

— Alink is associated with exactly one pair of communicating
processes

— Between each pair there exists exactly one link
— The link may be unidirectional, but is usually bi-directional

1/29/2010

CSCI 315 Operating Systems Design 20

20

Indirect Communication

* Messages are directed and received from mailboxes
(also referred to as ports)
— Each mailbox has a unique id
— Processes can communicate only if they share a mailbox

* Properties of communication link
— Link established only if processes share a common mailbox
— Alink may be associated with many processes
— Each pair of processes may share several communication

links

— Link may be unidirectional or bi-directional

1/29/2010

CSCI 315 Operating Systems Design

21

21

Indirect Communication

* Operations:
— create a new mailbox,
— send and receive messages through mailbox,
— destroy a mailbox.

* Primitives are defined as:
send(A, message) — send a message to
mailbox A,
receive(A, message) — receive a message
from mailbox A.

1/29/2010 CSCI 315 Operating Systems Design

22

22

Indirect Communication

» Mailbox sharing
- P,, P,, and P; share mailbox A
- P,, sends; P, and P; receive
— Who gets the message?

» Solutions
— Allow a link to be associated with at most two
processes
— Allow only one process at a time to execute a receive
operation

— Allow the system to select arbitrarily the receiver.
Sender is notified who the receiver was.

1/29/2010 CSCI 315 Operating Systems Design 23

23

Synchronization

* Message passing may be either blocking or non-
blocking.
* Blocking is considered synchronous:

- Blocking send has the sender block until the message is
received.

— Blocking receive has the receiver block until a message is
available.

* Non-blocking is considered asynchronous
— Non-blocking send has the sender send the message and

continue.
— Non-blocking receive has the receiver receive a valid message
or null.
1/29/2010 CSCI 315 Operating Systems Design 24

24

Buffering

Queue of messages attached to the link;
implemented in one of three ways:

1. Zero capacity — 0 messages
Sender must wait for receiver (rendezvous).

2. Bounded capacity — finite length of n
messages. Sender must wait if link full.

3. Unbounded capacity — infinite length.
Sender never waits.

1/29/2010 CSCI 315 Operating Systems Design

25

25

