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CSCI 315 Operating Systems Design

Interprocess Communication

Notice: The slides for this lecture have been largely based on those accompanying and earlier edirion
of the course text Operating Systems Concepts with Java, by Silberschatz, Galvin, and Gagne. Many,
if not all, of the illustrations contained in this presentation come from this source.
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Cooperating Processes

» An independent process cannot affect or be
affected by the execution of another process.

» A cooperating process can affect or be affected
by the execution of another process.

» Advantages of process cooperation:
— Information sharing,
— Computation speed-up,
— Modularity,
— Convenience.
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Communication Models
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Interprocess Communication
(IPC)

+ Mechanism for processes to communicate and to synchronize their
actions
+ Message system — processes communicate with each other without
resorting to shared variables
« |PC facility provides two operations:
— send(message) — message size fixed or variable
— receive(message)
« If P and Q wish to communicate, they need to:
— establish a communication link between them
— exchange messages via send/receive
+ |mplementation of communication link
— physical (e.g., shared memory, hardware bus)
— logical (e.g., logical properties)
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Implementation Questions

* How are links established?

» Can alink be associated with more than two
processes?

* How many links can there be between every pair
of communicating processes?

» What is the capacity of a link?

* |s the size of a message that the link can
accommodate fixed or variable?

* |s a link unidirectional or bi-directional?
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Interprocess Communication (IPC)

Naming

send | receive

Process P, ; Process P,

receive | send

naming send(P;, message): P, identifies process j in the system

(direct) receive(P;, message): P,identifies process i in the system
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Direct Communication

* Processes must name each other explicitly:
— send (P, message) — send a message to process P.
— receive(Q, message) — receive a message from process Q.

* Properties of communication link:
— Links are established automatically.

— Alink is associated with exactly one pair of communicating
processes.

— Between each pair there exists exactly one link.
— The link may be unidirectional, but is usually bi-directional.
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Interprocess Communication (IPC)

Naming

send ' receive

———— | mailboX | ——— |

Process P, i Process P
receive ' send

«— |mailbox| «——

naming send(m,, message). m, identifies mailbox a in the system

(indirect) | receive(m,, message): m, identifies mailbox b in the system
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Indirect Communication

* Messages are directed and received from mailboxes
(also referred to as ports):
— Each mailbox has a unique id,
— Processes can communicate only if they share a mailbox.

* Properties of communication link:
— Link established only if processes share a common mailbox,
— Alink may be associated with many processes,

— Each pair of processes may share several communication
links,

— Link may be unidirectional or bi-directional.
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Indirect Communication

* Operations:
— create a new mailbox,
— send and receive messages through mailbox,
— destroy a mailbox.

* Primitives are defined as:
send(A, message) — send a message to
mailbox A,
receive(A, message) — receive a message
from mailbox A.
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Indirect Communication

* Mailbox sharing:
- P,, P,, and P; share mailbox A,
- P,, sends; P, and P; receive,
— Who gets the message?

» Solutions
— Allow a link to be associated with at most two
processes.
— Allow only one process at a time to execute a receive
operation.

— Allow the system to select arbitrarily the receiver.
Sender is notified who the receiver was.
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Interprocess Communication (IPC)
Buffering
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The buffer can have:
= Zero-capacity
» bounded-capacity
* unbounded capacity
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Buffering

Queue of messages attached to the link;
implemented in one of three ways:

1. Zero capacity — 0 messages
Sender must wait for receiver (rendezvous).

2. Bounded capacity — finite length of n
messages. Sender must wait if link full.

3. Unbounded capacity — infinite length.
Sender never waits.
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Interprocess Communication (IPC)

Synchronization
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Synchronization

* Message passing may be either blocking or non-
blocking.
* Blocking is considered synchronous:

- Blocking send has the sender block until the message is
received.

— Blocking receive has the receiver block until a message is
available.

* Non-blocking is considered asynchronous
— Non-blocking send has the sender send the message and

continue.
— Non-blocking receive has the receiver receive a valid message
or null.
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Interprocess Communication (IPC)
Simplifying the whole thing (CSP / occam)
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rendezvous: blocking send, blocking receive, zero capacity channels
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Implementation Questions

* How are links established?

» Can alink be associated with more than two
processes?

* How many links can there be between every pair
of communicating processes?

» What is the capacity of a link?

* |s the size of a message that the link can
accommodate fixed or variable?

* |s a link unidirectional or bi-directional?
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Client-Server Communication

» Sockets
* Remote Procedure Calls (RPC)
* Remote Method Invocation (RMI - Java)
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Sockets

» A socket is defined as an endpoint for
communication.

» Concatenation of IP address and port.

* The socket 161.25.19.8:1625 refers to port 1625
on host 161.25.19.8.

« Communication consists between a pair of
sockets.

See online Appendix D for sockets in C and C++.
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Socket Communication

host X
(146.86.5.20)

socket
(146.86.5.2/1625) web server

(161.25.19.8)

socket
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Remote Procedure Calls

» Remote procedure call (RPC) abstracts procedure calls
between processes on networked systems.

» Stubs - client-side proxy for the actual procedure on the

server.

* The client-side stub locates the server and marshalls the

parameters.

* The server-side stub receives this message, unpacks the

marshalled parameters, and peforms the procedure on
the server.
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Remote Method Invocation

+ Remote Method Invocation (RMI) is a Java mechanism similar to
RPCs.

+ RMI allows a Java program on one virtual machine to invoke a
method on a remote object (on another virtual machine).

JVM
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Marshalling Parameters

client remote object

val = server.someMethod(A,B) boolean someMethod (Object x, Object y)
{

implementation of someMethod

}

[ slub‘Ir | | skelelonl

'y 'Y

| A, B, someMethod [

| boolean return value [
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Parameter Passing

RPC comes from a procedural programming
paradigm, while RMI comes from an object-
oriented paradigm.

The parameters in a remote method invocation
may be entire objects:

Support for object serialization is necessary.
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