KNELL UNIVERSITY

Computer Science
CSCI 315 Operating Systems Design

Threads

Notice: The slides for this lecture have been largely based on those accompanying an earlier edition
of the course text Operating Systems Concepts with Java, by Silberschatz, Galvin, and Gagne. Many,
if not all, the illustrations contained in this presentation come from this source.

02/03/2010 CSCI 315 Operating Systems Design 1

Multithreading

| code | | data | | files | |code | | data | ‘ files ‘
| stack | ‘ registers H registers H registers |

thread —» ;

I stack |

| stack |

I

stack |

:

:

g.._

— thread

single-threaded process

multithreaded process

02/03/2010

CSCI 315 Operating Systems

Design

Benefits

@ Responsiveness
@ Resource Sharing
@ Economy

@ Utilization of MP Architectures

02/03/2010 CSCI 315 Operating Systems Design

The 2 Types of Threads

@ User Threads:
» Thread management done by user-level threads library.
®» Three primary thread libraries:
- POSIX Pthreads
- Java threads
- Win32 threads

@ Kernel Threads:
®» Thread management done by the kernel.

02/03/2010 CSCI 315 Operating Systems Design

02/03/2010

Multithreading Models

@ Many-to-One

@ One-to-One

@ Many-to-Many

CSCI 315 Operating Systems Design

Many-to-One Model

Many user-level threads
mapped to single kernel k kernel thread
thread.

02/03/2010 CSCI 315 Operating Systems Design

Model

% % user threads

One-to-On

® @ kernel threads

| Each user-level thread maps to kernel thread.

02/03/2010 CSCI 315 Operating Systems Design

Many-to-Many Model

Several user level user threads
threads are mapped to
several kernel threads.

Allows the operating
system to create a
sufficient number of
kernel threads.

O

02/03/2010 CSCI 315 Operating Systems Design

kernel threads

Two-Level Model

user threads

Similar to M:M,
except that it allows a
user thread to be
bound to kernel
thread.

kernel threads

02/03/2010 CSCI 315 Operating Systems Design

Threading Issues

» Semantics of fork() and exec() system calls
(does fork() duplicate only the calling thread or
all threads?)

» Thread cancellation
» Signal handling

» Thread pools

» Thread specific data
« Scheduler activations

02/03/2010 CSCI 315 Operating Systems Design

10

10

Thread Cancellation

» Terminating a thread before it has
finished.

* Two general approaches:

— Asynchronous cancellation terminates the
target thread immediately.

— Deferred cancellation allows the target
thread to periodically check if it should be
cancelled.

02/03/2010 CSCI 315 Operating Systems Design

1

11

Signal Handling

» Signals are used in UNIX systems to notify a process
that a particular event has occurred.

* Assignal handler is used to process signals:
1. Signal is generated by particular event.
2. Signal is delivered to a process.
3. Signal is handled.
* Options:
Deliver the signal to the thread to which the signal applies.
Deliver the signal to every thread in the process.
Deliver the signal to certain threads in the process.
Assign a specific thread to receive all signals for the process.

02/03/2010 CSCI 315 Operating Systems Design

12

12

Thread Pools

» Create a number of threads in a pool
where they await work.

+ Advantages:

— Usually slightly faster to service a request with
an existing thread than create a new thread.

— Allows the number of threads in the
application(s) to be bound to the size of the
pool.

02/03/2010 CSCI 315 Operating Systems Design 13

13

Thread Specific Data

 Allows each thread to have its own copy of
data.

» Useful when you do not have control over
the thread creation process (i.e., when
using a thread pool).

02/03/2010 CSCI 315 Operating Systems Design 14

14

Scheduler Activations

» Both M:M and Two-level models require
communication to maintain the appropriate
number of kernel threads allocated to the
application.

» Scheduler activations provide upcalls - a
communication mechanism from the kernel to
the thread library.

» This communication allows an application to
maintain the correct number kernel threads.

02/03/2010 CSCI 315 Operating Systems Design

15

15

Pthreads

+ A POSIX standard (IEEE 1003.1c) API for
thread creation and synchronization.

» API specifies behavior of the thread
library, implementation is up to
development of the library.

+ Common in UNIX operating systems
(Solaris, Linux, Mac OS X).

02/03/2010 CSCI 315 Operating Systems Design 16

16

02/03/2010

Pthreads

d identifier */
pthread_attr_t attr; /* set of attributes for the thread
I* get the default attributes */

id *runner(void *param) {

int upper = atoi(parar

inti;

sum = U,

if (upper = 0) {
for (i = 1; i <= upper; i++)

sum +=i;
1

}
pthread_exit(0);}

CSCI 315 Operating Systems Design

*f

17

17

Linux Threads

* Linux refers to them as tasks rather than
threads.

* Thread creation is done through clone()
system call.

» clone() allows a child task to share the
address space of the parent task
(process).

02/03/2010 CSCI 315 Operating Systems Design 18

18

