KNELL UNIVERSITY

Computer Science
CSCI 315 Operating Systems Design

Java Threads

Notice: The slides for this lecture have been largely based on those accompanying an earlier version
of the course text Operating Systems Concepts with Java, by Silberschatz, Galvin, and Gagne. Many,
if not all, the illustrations contained in this presentation come from this source.

02/05/2008 CSCI 315 Operating Systems Design 1




Multithreading

| code | | data | | files | |code | | data | ‘ files ‘
| stack | ‘ registers H registers H registers |

thread —» ;

I stack |

| stack |

I

stack |

:

:

g.._

— thread

single-threaded process

multithreaded process

02/05/2008

CSCI 315 Operating Systems

Design




Pthreads

+ A POSIX standard (IEEE 1003.1c) API for
thread creation and synchronization.

» API specifies behavior of the thread
library, implementation is up to
development of the library.

+ Common in UNIX operating systems
(Solaris, Linux, Mac OS X).

02/05/2008 CSCI 315 Operating Systems Design




Pthreads

d identifier */
pthread_attr_t attr; /* set of attributes for the thread
I* get the default attributes */

*f

id *runner(void *param) {

int upper = atoi(parar

inti;

sum = U,

if (upper = 0) {
for (i = 1; i <= upper; i++)

sum +=i;
1

}
pthread_exit(0);}

02/05/2008 CSCI 315 Operating Systems Design




Linux Threads

* Linux refers to them as tasks rather than
threads.

* Thread creation is done through clone()
system call.

» clone() allows a child task to share the
address space of the parent task
(process).

02/05/2008 CSCI 315 Operating Systems Design




Java Threads

« Java threads are managed by the JVM.

« Java threads may be created by:

— Extending Thread class.
— Implementing the Runnable interface.

02/05/2008 CSCI 315 Operating Systems Design




Extending the Thread Class

class Worker1 extends Thread

{

public void run() {
System.out.printin("l Am a Worker Thread");
}
}

public class First

{

public static void main(String args[]) {
Worker1 runner = new Worker1();
runner.start();

System.out.printin("l Am The Main Thread");
}

}

02/05/2008 CSCI 315 Operating Systems Design




02/05/2008

The Runnable Interface

public interface Runnable

{

public abstract void run();

}

CSCI 315 Operating Systems Design




Implementing the Runnable Interface

class Worker2 implements Runnable {
public void run() {
System.out.printin("l Am a Worker Thread");

}

}

public class Second {
public static void main(String args]]) {
Runnable runner = new Worker2();
Thread thrd = new Thread(runner);
thrd.start();

System.out.printin("l Am The Main Thread");

}
}

02/05/2008 CSCI 315 Operating Systems Design 9




Java Thread States

02/05/2008 CSCI 315 Operating Systems Design 10

10



02/05/2008

Joining Threads

}

{

}

class JoinableWorker implements Runnable

public void run() {
System.out. printIn{"Worker working");

public class JoinExample

main(String[] args) {

Thread task = new Thread(new JoinableWorker());

task.start();

try { task.join(); } =T}

catch (InterruptedException ie) { }

System.out.printin("Worker done"),

CSCI 315 Operating Systems Design

1"

11



Thread Cancellation

Thread thrd = new Thread (new InterruptibleThread());
Thrd.start();

/I now interrupt it
Thrd.interrupt();

One could also use the stop() method in the thread class, but that
is deprecated (that is, still exists, but is being phased out). Note
that while stop() is asynchronous cancellation, interrupt() is
deferred cancellation.

02/05/2008 CSCI 315 Operating Systems Design

12

12



Thread Cancellation

public class InterruptibleThread implements Runnable

{
public void run() {

while (true) {
!**
* do some work for awhile
*/

> if (Thread.currentThread().isInterrupted()) {

With deferred
cancellation, the
thread must
periodically check
if it's been
cancelled.

02/05/2008

System.out.printin("lI'm interrupted!");
break;
}
}
/I clean up and terminate
}
}

CSCI 315 Operating Systems Design

13

13



Thread-Specific Data

All one needs to do in order to create data
that is specific to a thread is to subclass
the Thread class declaring its own private
data.

This approach doesn’t work when the
developer has no control over the thread
creation process.

02/05/2008 CSCI 315 Operating Systems Design 14

14



Thread Specific Data

class Service

{

private static ThreadlLocal errorCode = new ThreadLocal(),

public static void transaction() {
try {
/I some operation where an error may occur
catch (Exception e) {

write

errorCode.set(e), ==}
}

}

/I get the error code for this transaction

public static Object getErrorCode() {

read

return errorCode.get();, =t

}
}

02/05/2008

CSCI 315 Operating Systems Design

15

15



02/05/2008

Thread Specific Data

class Worker implements Runnable

{

private static Service provider;

public void run() {

}
}

provider.transaction();
System.out.printin(provider.getErrorCode());

CSCI 315 Operating Systems Design

16

16



Producer-Consumer Problem

public class Factory
{
public Factory() {
/I first create the message buffer
Channel mailBox = new MessageQueue();

/l now create the producer and consumer threads
Thread producerThread = new Thread(new Producer(mailBox));
Thread consumerThread = new Thread(new Consumer(mailBox));

producerThread.start();
consumerThread.start();

}

public static void main(String args[]) {
Factory server = new Factory();

}

}

02/05/2008 CSCI 315 Operating Systems Design

17

17



Producer Thread

class Producer implements Runnable

{

private Channel mbox;

public Producer(Channel mbox) {
this.mbox = mbox;

}

public void run() {
Date message;

while (true) {
SleepUtilities.nap();
message = new Date();
Systern.out.printin("Producer produced " + message);

// produce an item & enter it into the buffer

send () is non-blocking

mbox.send(message); <

}
}
}

02/05/2008 CSCI 315 Operating Systems Design

18

18



Consumer Thread

class Consumer implements Runnable

{

private  Channel mbox;

public Consumer(Channel mbox) {
this.mbox = mbox;

}

public void run() {
Date message;

while (true) {
SleepUtilities.nap();
/f consume an item from the buffer

Systemn.out.printin("Consumer wants to consume."); f'”q an empty
mailbox

receive() is
non-blocking; it may

message = (Date) mbox.receive(); <:

if (message != null)
System.out. printin("Consumer consumed " + message);
}
}
}

02/05/2008 CSCI 315 Operating Systems Design 19




