Cbmputer gc[ieyc:lEIVERSITY

CSCI 315 Operating Systems Design

CPU Scheduling Algorithms

Notice: The slides for this lecture have been largely based on those from an earlier edition of the
course text Operating Systems Concepts with Java, by Silberschatz, Galvin, and Gagne. Many, if not
all, the illustrations contained in this presentation come from this source.

02/08/2010 CSCI 315 Operating Systems Design

Basic Concepts

4

L]

Questions:

*When does a process start competing for the CPU?

= How is the queue of ready processes organized?

* How much time does the system allow a process to use the CPU?
= Does the system allow for priorities and preemption?

*What does it mean to maximize the system’s performance?

02/08/2010

CSCI 315 Operating Systems Design

Basic Concepts

+ You want to maximize CPU utilization through
the use of multiprogramming.

» Each process repeatedly goes through cycles
that alternate CPU execution (a CPU burst) and
I/0 wait (an I/O walit).

» Empirical evidence indicates that CPU-burst
lengths have a distribution such that there is a
large number of short bursts and a small number
of long bursts.

02/08/2010 CSCI 315 Operating Systems Design 3

Alternating Sequence of CPU And I/O Bursts

load store
add store
read from file

wait for 'O VO burst

store increment
index CPU burst

CPU burst

write to file

walt for /O VO burst

load store
add store
read from file

CPU burst

02/08/2010 CSCI 315 Operating Systems Design

Histogram of CPU-burst Times

frequency

[)

16 24 32 40

burst duration (milliseconds)

02/08/2010

CSCI 315 Operating Systems Design

CPU Scheduler

* AKA short-term scheduler.

« Selects from among the processes in memory that are
ready to execute, and allocates the CPU to one of them.

| Question: Where does the system keep the processes that are ready to execute? ‘

* CPU scheduling decisions may take place when a
process:
1. Switches from running to waiting state,
2. Switches from running to ready state,
3. Switches from waiting to ready,
4. Terminates.

02/08/2010 CSCI 315 Operating Systems Design 5]

Preemptive Scheduling

* In cooperative or nonpreemptive scheduling, when a
process takes the CPU, it keeps it until the process
either enters waiting state or terminates.

* In preemptive scheduling, a process holding the CPU
may lose it. Preemption causes context-switches, which
introduce overhead. Preemption also calls for care when
a process that loses the CPU is accessing data shared
with another process or kernel data structures.

02/08/2010 CSCI 315 Operating Systems Design

Dispatcher

* The dispatcher module gives control of the
CPU to the process selected by the short-term
scheduler; this involves:

— switching context,

— switching to user mode,

— jumping to the proper location in the user program to
restart that program.

« The dispatch latency is the time it takes for the
dispatcher to stop one process and start another
running.

02/08/2010 CSCI 315 Operating Systems Design 8

Scheduling Criteria

These are performance metrics such as:

= CPU utilization — high is good, the system works best when the
CPU is kept as busy as possible.

* Throughput — the number of processes that complete their
execution per time unit.

+ Turnaround time — amount of time to execute a particular process.

+ Waiting time — amount of time a process has been waiting in the
ready queue.

* Response time — amount of time it takes from when a request was
submitted until the first response is produced, not output (for time-
sharing environment).

It makes sense to look at averages of these metrics.

02/08/2010 CSCI 315 Operating Systems Design

02/08/2010

Optimizing Performance

Maximize CPU utilization.
Maximize throughput.
Minimize turnaround time.
Minimize waiting time.
Minimize response time.

L]

L]

CSCI 315 Operating Systems Design

10

10

02/08/2010

Scheduling Algorithms

CSCI 315 Operating Systems Design

1"

11

First-Come, First-Served (FCFS)

Process Burst Time
P, 24
P, 3
P, 3

= Suppose that the processes arrive in the order. P, , P, , P;
The Gantt Chart for the schedule is:

P P> Ps

0 24 27 30

+ Waitingtime for P, =0; P, =24; P,=27
* Average waiting time: (0 +24 +27)/3 =17

02/08/2010 CSCI 315 Operating Systems Design

12

12

FCFS

Suppose that the processes arrive in the order
P,,P;, P,
The Gantt chart for the schedule is:

P> Ps P

0 3 6 30

* Waiting time for P, =6, P,=0.P;=3

* Average waiting time: (6+0+3)/3=3

¢ Much better than previous case.

* Convoy effect: all process are stuck waiting until a long process terminates.

02/08/2010 CSCI 315 Operating Systems Design

Shortest-Job-First (SJF)

» Associate with each process the length of its next CPU
burst. Use these lengths to schedule the process with
the shortest time.

e Two schemes:

- Nonpreemptive — once CPU given to the process it cannot be
preempted until completes its CPU burst.

— Preemptive — if a new process arrives with CPU burst length

less than remaining time of current executing process, preempt.

This scheme is know as the Shortest-Remaining-Time-First
(SRTF).

» SJF is optimal — gives minimum average waiting time
for a given set of processes.

‘ Question: Is this practical? How can one determine the length of a CPU-burst? ‘

02/08/2010 CSCI 315 Operating Systems Design

14

14

Non-Preemptive SJF

Process Arrival Time

Burst Time
P, 0.0 7
P, 2.0 4
Ps 4.0 1
P, 5.0 4
* SJF (non-preemptive)
P, P P, P,
—t—t——1 —— ——
0 3 7 8 12 16

Average waiting tme = (0+6+3 +7)/4=4

02/08/2010 CSCI 315 Operating Systems Design

15

15

Preemptive SJF

Process Arrival Time Burst Time
P, 0.0 7
P, 2.0 4
P, 4.0 1
P, 5.0 4

+ SJF (preemptive)

* Average waitingtime=(9+1+0+2)/4=3

02/08/2010 CSCI 315 Operating Systems Design

16

16

Determining Length of Next
CPU-Burst

» We can only esfimate the length.

» This can be done by using the length of previous
CPU bursts, using exponential averaging:

T}Hl =a tn + (1 - a)Tn

1. t, =actual lenght of »” CPU burst
2.7

n+l

3.0 <]

= predicted value for the next CPU burst

02/08/2010 CSCI 315 Operating Systems Design 17

17

Prediction of the Length of the
Next CPU-Burst

i —
/ —
T, 10 /
6 //
[/ 6 |/
L
4
2
time —
CPU burst {t) 6 4 6 4 13 13 13
"guess” (1) 10 8 6 6 5 9 1 12
02/08/2010 CSCI 315 Operating Systems Design

18

18

