A S TVERSITY

CSCI 315 Operating Systems Design

Process Synchronization

Notice: The slides for this lecture have been largely based on those accompanying an earlier edition
of the course text Operating Systems Concepts with Java, by Silberschatz, Galvin, and Gagne. Many,
if not all, the illustrations contained in this presentation come from this source.

02/17/2010 CSCI 315 Operating Systems Design




Race Condition

A race occurs when the correctness of a program depends
on one thread reaching point x in its control flow before

another thread reaches point y.

Races usually occurs because programmers assume that
threads will take some particular trajectory through the
execution space, forgetting the golden rule that
threaded programs must work correctly for any

feasible trajectory.

Computer Systems
A Programmer’s Perspective
Randal Bryant and David O’Hallaron

02/17/2010 CSCI 315 Operating Systems Design 2




The Critical-Section Problem
Solution

1. Mutual Exclusion - If process P; is executing in its critical
section, then no other processes can be executing in their
critical sections.

2. Progress - If no process is executing in its critical section and
there exist some processes that wish to enter their critical
section, then the selection of the processes that will enter the
critical section next cannot be postponed indefinitely.

3. Bounded Waiting - A bound must exist on the number of times
that other processes are allowed to enter their critical sections
after a Process has made a request to enter its critical section
and before that request is granted. (Assume that each process
executes at a nonzero speed. No assumption concerning
relative speed of the N processes.)

02/17/2010 CSCI 315 Operating Systems Design




Algorithm 3

public class Algorithm_3 implements MutualExclusion
{
private volatile boolean flag[2];
private volatile int turn;
public Algorithm_3() {
flag[0] = false;
flag[1] = false;
turn = TURN_O;
}
/I Continued on Next Slide

02/17/2010 CSCI 315 Operating Systems Design




Algorithm 3 — cont'd

public void enteringCriticalSection(int t) {
int other=1-t;

flag[t] = true;

turn = other;

while(flag[other] && turn == other)
Thread.yield(),

public void leavingCriticalSection(int t) {
flag[t] = false;
}

02/17/2010 CSCI 315 Operating Systems Design




Synchronization Hardware

* Many systems provide hardware support for critical
section code.

* Uniprocessors (could disable interrupts):
— Currently running code would execute without preemption.
— Generally too inefficient on multiprocessor systems.
— Operating systems using this not broadly scalable.

* Modern machines provide special atomic hardware
instructions:
— boolean getAndSet(boolean b)
- void swap(boolean b)

02/17/2010 CSCI 315 Operating Systems Design




Semaphore as General
Synchronization Tool

+ Counting semaphore - integer value can range over an
unrestricted domain.

+ Binary semaphore - integer value can range only between 0
and 1; can be simpler to implement (also known as mutex locks).

+ Note that one can implement a counting semaphore S as a binary
semaphore.

* Provides mutual exclusion:

Semaphore S(1); // initialized to 1

acquire(S);
criticalSection();
release(S);

02/17/2010 CSCI 315 Operating Systems Design




Semaphore Implementation

acquire(S) {
value--;
if (value <0) {
add this process to list
block;

release(S) {
value++;
if (value <=0) {
remove some process P
from list
wakeup(P);

02/17/2010 CSCI 315 Operating Systems Design




Semaphore Implementation

* Must guarantee that no two processes can execute
acquire() and release() on the same semaphore at
the same time.

* The implementation becomes the critical section
problem:

— Could now have busy waiting in critical section
implementation
* But implementation code is short
+ Little busy waiting if critical section rarely occupied

— Applications may spend lots of time in critical section

02/17/2010 CSCI 315 Operating Systems Design




Monitor

Semaphores are low-level synchronization resources.
A programmer's honest mistake can compromise the entire system (well,

that is almost always true). We should want a solution that reduces risk.

monitor type:

The solution can take the shape of high-level language constructs, as the

monitor monitor-name A procedure within a_momtor can
access only local variables defined
{ within the monitor.
/f variable declarations
ablic snty 1 There cannot be concurrent access to
P y P14 procedures within the monitor (only one
thread can be active in the monitor at
} any given time).
public entry p2(...) { Condition variables: queues are
associated with variables. Primitives for
} synchronization are wait and signal.
} 7
02/17/2010 CSCI 315 Operating Systems Design 10

10



02/17/2010

Monitor

entry queue

shared data

-l

v

operations

initialization
code

CSCI 315 Operating Systems Design

1"

11



Deadlock and Starvation

Deadlock - two or more processes are waiting indefinitely for an
event that can be caused by only one of the waiting processes.

Let S and Q be two semaphores initialized to 1

Po P

acquire(S); acquire(Q);
acquire(Q), acquire(S);
rélease(S}; .release(Q);
release(Q); release(S),

Starvation - indefinite blocking. A process may never be removed
from the semaphore queue in which it is suspended.

02/17/2010 CSCI 315 Operating Systems Design 12

12



The Dining-Philosophers Problem

02/17/2010 CSCI 315 Operating Systems Design

13

13



The Dining-Philosophers Problem

State diagram for a philosopher

02/17/2010 CSCI 315 Operating Systems Design

14

14



The Dining-Philosophers Problem

GNON®
® ©
O O

® . ©

15



The Dining-Philosophers Problem

Oe0
® ©
O O

® . ©

16



The Dining-Philosophers Problem

__NON®
O ®
(o &

O . O

17



The Dining-Philosophers Problem

__NON®
O ©
O O

® . ©

18



The Dining-Philosophers Problem

__NON®
O ©
O O

® . ©

19



The Dining-Philosophers Problem

Question: How many philosophers can eat at once?
How can we generalize this answer for n philosophers
and n chopsticks?

Question: What happens if the programmer initializes
the semaphores incorrectly? (Say, two semaphores
start out a zero instead of one.)

Question: How can we formulate a solution to the
problem so that there is no deadlock or starvation?

02/17/2010 CSCI 315 Operating Systems Design

20

20



