A S TVERSITY

CSCI 315 Operating Systems Design

Process Synchronization

Notice: The slides for this lecture have been largely based on those accompanying an earlier version
of the course text Operating Systems Concepts with Java, by Silberschatz, Galvin, and Gagne. Many,
if not all, the illustrations contained in this presentation come from this source.

02/19/2010 CSCI 315 Operating Systems Design

Semaphore as General
Synchronization Tool

+ Counting semaphore - integer value can range over an
unrestricted domain.

+ Binary semaphore - integer value can range only between 0
and 1; can be simpler to implement (also known as mutex locks).

+ Note that one can implement a counting semaphore S as a binary
semaphore.

* Provides mutual exclusion:

Semaphore S(1); // initialized to 1

acquire(S);
criticalSection();
release(S);

02/19/2010 CSCI 315 Operating Systems Design

Semaphore Implementation

acquire(S) {
value--;
if (value <0) {
add this process to list
block;

release(S) {
value++;
if (value <=0) {
remove some process P
from list
wakeup(P);

02/19/2010 CSCI 315 Operating Systems Design

Semaphore Implementation

* Must guarantee that no two processes can execute
acquire() and release() on the same semaphore at
the same time.

* The implementation becomes the critical section
problem:

— Could now have busy waiting in critical section
implementation
* But implementation code is short
+ Little busy waiting if critical section rarely occupied

— Applications may spend lots of time in critical section

02/19/2010 CSCI 315 Operating Systems Design

Deadlock and Starvation

Deadlock - two or more processes are waiting indefinitely for an
event that can be caused by only one of the waiting processes.

Let S and Q be two semaphores initialized to 1

Po P

acquire(S); acquire(Q);
acquire(Q), acquire(S);
rélease(S}; .release(Q);
release(Q); release(S),

Starvation - indefinite blocking. A process may never be removed
from the semaphore queue in which it is suspended.

02/19/2010 CSCI 315 Operating Systems Design 5

The Dining-Philosophers Problem

02/19/2010 CSCI 315 Operating Systems Design

The Dining-Philosophers Problem

State diagram for a philosopher

Shared data:
semaphore chopstick[5];
(Initially all values are 1)

02/19/2010 CSCI 315 Operating Systems Design

The Dining-Philosophers Problem

Question: How many philosophers can eat at once?
How can we generalize this answer for n philosophers
and m chopsticks?

Question: What happens if the programmer initializes
the semaphores incorrectly? (Say, two semaphores
start out a zero instead of one.)

Question: How can we formulate a solution to the
problem so that there is no deadlock or starvation?

02/19/2010 CSCI 315 Operating Systems Design

Dining-Philosophers Solution?

Philosopher i

do {
wait(chopstick[i])
wait(chopstick[(i+1) % 5])
eat
signal(chopstickl[i]);
signal(chopstick[(i+1) % 5]);

think

} while (1);

02/19/2010 CSCI 315 Operating Systems Design

Monitor

Definition: High-level synchronization construct that allows the safe sharing of an
abstract data type among concurrent processes.

monitor monitor-name

{

shared variables
procedure body P17 (...) {

}
procedure body P2 (...) {

}
procedure body Pn (...) {

=

A procedure within a monitor can
access only local variables defined
within the monitor.

There cannot be concurrent access to
procedures within the monitor (only one
thread can be active in the monitor at
any given time).

} Condition variables: queues are
§i associated with variables. Primitives for
initialization code synchronization are wait and signal.
}
) ol
02/19/2010 CSCI 315 Operating Systems Design 10

10

Schematic View of a Monitor

entry queue

shared data

operations

initialization
code

02/19/2010 CSCI 315 Operating Systems Design

1"

11

Monitor

» To allow a process to wait within the monitor, a condition
variable must be declared, as

condition x, y;

+ Condition variable can only be used with the operations wait and
signal.
— The operation

x.wait();
means that the process invoking this operation is suspended until
another process invokes

X.signal();

— The x.signal operation resumes exactly one suspended process. If
no process is suspended, then the signal operation has no effect.

02/19/2010 CSCI 315 Operating Systems Design

12

12

Monitor and Condition Variables

queues associated with

x, y conditions

entry queue

shared data

v
operations

initialization
code

02/19/2010

CSCI 315 Operating Systems Design

13

13

Dining Philosophers with Monitor

monitor dp
{
enum {thinking, hungry, eating} state[5];
condition self[5];
void pickup(int i);
void putdown(int i);
void test(int i);
void init() {
for(inti=0;i<85; i++)
state[i] = thinking;

02/19/2010 CSCI 315 Operating Systems Design

14

14

Dining Philosophers

void pickup(int i) {
state[i] = hungry;
test(i);
if (state[i] != eating)
self[i].wait();

}

void putdown(int i) {
state[i] = thinking;

void test(int i) {
if ((state[(i + 4) % 5] != eating) &&
(state[i] == hungry) &&
(state[(i + 1) % 5] != eating)) {
state[i] = eating;
self[i].signal();

I* test left and right }
neighbors */ }
test((i+4) % 5);
test((i+1) % 5);
}
02/19/2010 CSCI 315 Operating Systems Design 15

15

