[Sé‘ UNIVERSITY

ience
CSCI 315 Operating Systems Design

Comput

Deadlock

Notice: The slides for this lecture have been largely based on those accompanying an earlier edition
of the course text Operating Systems Concepts with Java, by Silberschatz, Galvin, and Gagne. Many,
if not all, the illustrations contained in this presentation come from this source.

02/22/2010 CSCI 315 Operating Systems Design

02/22/2010

Concepts to discuss

mmmm) Deadlock
mm)> Livelock

> Spinlock vs. Blocking

CSCI 315 Operating Systems Design

Deadlock: Bridge Crossing Example

» Traffic only in one direction.
« Each section of a bridge can be viewed as a resource.

+ |f a deadlock occurs, it can be resolved if one car backs
up (preempt resources and rollback).

+ Several cars may have to be backed up if a deadlock
occurs.

« Starvation is possible.

02/22/2010 CSCI 315 Operating Systems Design

Deadlock: Dining-Philosophers Example

Imagine all philosophers start out
hungry and that they all pick up their

left chopstick at the same time.

Assume that when a philosopher
manages to get a chopstick, it is not
released until a second chopstick is
acquired and the philosopher has
eaten his share.

Question: Why did deadlock
happen? Try to enumerate all the
conditions that have to be satisfied for
deadlock to occur.

Question: How could be done to

guarantee deadlock won't happen?

02/22/2010 CSCI 315 Operating Systems Design

A System Model

* Resource types R, R,, . . ., Ry,

CPU cycles, memory space, I/O devices
« Each resource type R, has W, instances.
» Each process utilizes a resource as
follows:
—request
— use
—release

02/22/2010 CSCI 315 Operating Systems Design

Deadlock Characterization

Deadlock can arise if four conditions hold simultaneously:

* Mutual exclusion: only one process at a time can use a
resource.

» Hold and wait: a process holding at least one resource is
waiting to acquire additional resources held by other
processes.

* No preemption: aresource can be released only voluntarily
by the process holding it, after that process has completed
its task.

» Circular wait: there exists a set {P,, P, ..., Po} of waiting
processes such that P, is waiting for a resource that is held
by P,, P, is waiting for a resource that is held by

P,, ..., P,_4 is waiting for a resource that is held by
P, and P, is waiting for a resource that is held by P,,.

02/22/2010 CSCI 315 Operating Systems Design

Resource Allocation Graph

Graph: G=(V,E)

* The nodes in V can be of two types (partitions):

- P={P,, P,, ..., P}, the set consisting of all the
processes in the system.

- R={R,, R, ..., R}, the set consisting of all resource
types in the system.

* request edge — directed edge P; — R;
* assignment edge — directed edge R; — P;

02/22/2010 CSCI 315 Operating Systems Design

Resource Allocation

Graph

Process O

Resource Type with 4 instances

P; requests instance of R;

P;is holding an instance of R;

o
o

u]
(m]

R;

R;

02/22/2010 CSCI 315 Operating Systems Design

02/22/2010

Example of a Resource
Allocation Graph

R,

\\
@{ be

\

L L]
L]
FFE [
R

CSCI 315 Operating Systems Design

Resource Allocation Graph With A
Deadlock

[
R, .
F"4
02/22/2010 CSCI 315 Operating Systems Design 10

10

Resource Allocation Graph With A Cycle
But No Deadlock

& |
R T2
1
o
L] '--.\/
PS
P1
R?
~N
[
[] “'h-..\/
&,
02/22/2010 CSCI 315 Operating Systems Design

1"

11

Basic Facts

- If graph contains no cycles = no
deadlock.

- If graph contains a cycle =

— if only one instance per resource type, then
deadlock.

— if several instances per resource type,
possibility of deadlock.

02/22/2010 CSCI 315 Operating Systems Design

12

12

Methods for Handling
Deadlocks

* Ensure that the system will never enter a
deadlock state.

» Allow the system to enter a deadlock state and
then recover.

* Ignore the problem and pretend that deadlocks
never occur in the system; used by most
operating systems, including UNIX.

02/22/2010 CSCI 315 Operating Systems Design 13

13

Deadlock Prevention

Restrain the ways request can be made.

* Mutual Exclusion — not required for sharable
resources; must hold for nonsharable
resources.

* Hold and Wait — must guarantee that whenever
a process requests a resource, it does not hold
any other resources.

— Require process to request and be allocated all its
resources before it begins execution, or allow process
to request resources only when the process has none.

— Low resource utilization; starvation possible.

02/22/2010 CSCI 315 Operating Systems Design

14

14

Deadlock Prevention

Restrain the ways request can be made.

* No Preemption —

— If a process that is holding some resources requests another
resource that cannot be immediately allocated to it, then all
resources currently being held are released.

— Preempted resources are added to the list of resources for which
the process is waiting.

— Process will be restarted only when it can regain its old
resources, as well as the new ones that it is requesting.

» Circular Wait — impose a total ordering of all resource
types, and require that each process requests resources
in an increasing order of enumeration.

02/22/2010 CSCI 315 Operating Systems Design 15

15

