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Virtual Memory

Notice: The slides for this lecture have been largely based on those accompanying an earlier edition
of the course text Operating Systems Concepts with Java, by Silberschatz, Galvin, and Gagne. Many,
if not all, of the illustrations contained in this presentation come from this source.
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Virtual Memory

* Virtual memory — separation of user logical memory
from physical memory.
— Only part of the program needs to be in memory for execution.

— Logical address space can therefore be much larger than
physical address space.
— Allows address spaces to be shared by several processes.

— Allows for more efficient process creation.

* Virtual memory can be implemented via:
— Demand paging
— Demand segmentation
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Virtual Memory
Larger than Physical Memory
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Demand Paging

* Bring a page into memory only when it is

needed.

— Less I/0O needed.

— Less memory needed.
— Faster response.

— More users.

* Page is needed (there is a reference to it):
— invalid reference = abort.
— not-in-memory = bring to memory.
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Transfer of a Paged Memory to
Contiguous Disk Space
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Valid-Invalid Bit

* With each page table entry a valid—invalid bit is associated
(1 = in-memory, 0 = not-in-memory)

¢ Initially valid—invalid but is set to 0 on all entries.
* Example of a page table snapshot.
Frame # valid-invalid bit

1

Olalala

o

page table

* During address translation, if valid—invalid bit in page table entry is 0 = page
fault.
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Page Table when some pages are not
in Main Memory
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Page Fault

= |Ifthere is ever a reference to a page, first reference will trap to OS =
page fault.

= OS looks at page table to decide:
— If it was an invalid reference = abort.
— Ifit was a reference to a page that is not in memory, continue.

=  Get an empty frame.
= Swap page into frame.
» Correct the page table and make validation bit = 1.

» Restart the instruction that caused the page fault.
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Steps in Handling a Page Fault
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No free frame: now what?

» Page replacement: Are all those pages in

memory being referenced? Choose one to swap

back out to disk and make room to load a new
page.
— Algorithm: How you choose a victim.

— Performance: Want an algorithm that will result in
minimum number of page faults.

» Side effect: The same page may be brought in
and out of memory several times.
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Performance of Demand Paging

« Page Fault Rate: 0<p<1.0
— if p = 0 no page faults.
— if p =1, every reference is a fault.

- Effective Access Time (EAT):
EAT =[(1 - p) (memory access)] + [p (page fault overhead)]

where:

page fault overhead = [swap page out ] + [swap page in]
+ [restart overhead]
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Page Replacement

* Prevent over-allocation of memory by modifying page-
fault service routine to include page replacement.

+ Use modify (dirty) bit to reduce overhead of page
transfers — only modified pages are written to disk.

* Page replacement completes separation between logical
memory and physical memory — large virtual memory
can be provided on a smaller physical memory.
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Need For Page Replacement
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Basic Page Replacement

1. Find the location of the desired page on disk.

2. Find a free frame:
- If there is a free frame, use it.
- If there is no free frame, use a page replacement
algorithm to select a victim frame.

3. Read the desired page into the (newly) free frame.
Update the page and frame tables.

4. Restart the process.
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Page Replacement Algorithms

» Goal: Produce a low page-fault rate.

» Evaluate algorithm by running it on a particular
string of memory references (reference string)
and computing the number of page faults on that
string.

» The reference string is produced by tracing a
real program or by some stochastic model. We
look at every address produced and strip off the
page offset, leaving only the page number. For
instance:

1,2,3,4,1,2,5,1,2,3,4,5
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Graph of Page Faults Versus The

Number of Frames
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FIFO Page Replacement

+ Referencestring: 1,2, 3,4,1,2,5,1,2, 3,4, 5.
= 3 frames (3 pages can be in memory at a time per process)

1 4 5

2 1 3 9page faults
* 4 frames ’ 2 4

1 5 4

2 1 5 10 page faults

3 2

4 3

* FIFO Replacement = Belady's Anomaly: more frames, more
page faults.
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FIFO Page Replacement
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FIFO (Belady’s Anomaly)
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Optimal Algorithm

* Replace the page that will not be used for longest period
of time. (How can you know what the future references

will be?)

* 4 frames example: 1,2,3,4,1,2,5,1,2,3,4,5

4

6 page faults

[o]e]w]-]

5

» Used for measuring how well your algorithm performs.
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Optimal Page Replacement

reference string
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