BUCKNELL UNIVERSITY Computer Science

CSCI 315 Operating Systems Design

Virtual Memory

<u>Notice:</u> The slides for this lecture have been largely based on those accompanying an earlier edition of the course text *Operating Systems Concepts with Java*, by Silberschatz, Galvin, and Gagne. Many, if not all, of the illustrations contained in this presentation come from this source.

03/26/2010

CSCI 315 Operating Systems Design

Virtual Memory

- **Virtual memory** separation of user logical memory from physical memory.
 - Only part of the program needs to be in memory for execution.
 - Logical address space can therefore be much larger than physical address space.
 - Allows address spaces to be shared by several processes.
 - Allows for more efficient process creation.
- Virtual memory can be implemented via:
 - Demand paging
 - Demand segmentation

03/26/2010

CSCI 315 Operating Systems Design

Demand Paging

- Bring a page into memory only when it is needed.
 - Less I/O needed.
 - Less memory needed.
 - Faster response.
 - More users.
- Page is needed (there is a reference to it):
 - invalid reference ⇒ abort.
 - not-in-memory ⇒ bring to memory.

03/26/2010

CSCI 315 Operating Systems Design

Valid-Invalid Bit

- With each page table entry a valid–invalid bit is associated (1 \Rightarrow in-memory, 0 \Rightarrow not-in-memory)
- Initially valid-invalid but is set to 0 on all entries.
- Example of a page table snapshot.

Frame #	valid-invalid bit	
	1	
	1	
	1	
	1	
	0	
÷		
	0]
	0	
page table		

 During address translation, if valid–invalid bit in page table entry is 0 ⇒ page fault

03/26/2010

CSCI 315 Operating Systems Design

Page Fault

- If there is ever a reference to a page, first reference will trap to OS ⇒ page fault.
- OS looks at page table to decide:
 - If it was an invalid reference ⇒ abort.
 - If it was a reference to a page that is not in memory, continue.
- · Get an empty frame.
- Swap page into frame.
- Correct the page table and make validation bit = 1.
- · Restart the instruction that caused the page fault.

03/26/2010

CSCI 315 Operating Systems Design

No free frame: now what?

- Page replacement: Are all those pages in memory being referenced? Choose one to swap back out to disk and make room to load a new page.
 - Algorithm: How you choose a victim.
 - Performance: Want an algorithm that will result in minimum number of page faults.
- Side effect: The same page may be brought in and out of memory several times.

03/26/2010

CSCI 315 Operating Systems Design

Performance of Demand Paging

- Page Fault Rate: $0 \le p \le 1.0$
 - if p = 0 no page faults.
 - if p = 1, every reference is a fault.
- Effective Access Time (EAT):

```
EAT = [(1 - p) \text{ (memory access)}] + [p \text{ (page fault overhead)}]
```

where:

03/26/2010

CSCI 315 Operating Systems Design

Page Replacement

- Prevent over-allocation of memory by modifying pagefault service routine to include page replacement.
- Use modify (dirty) bit to reduce overhead of page transfers – only modified pages are written to disk.
- Page replacement completes separation between logical memory and physical memory – large virtual memory can be provided on a smaller physical memory.

03/26/2010

CSCI 315 Operating Systems Design

Basic Page Replacement

- 1. Find the location of the desired page on disk.
- 2. Find a free frame:
 - If there is a free frame, use it.
 - If there is no free frame, use a page replacement algorithm to select a *victim* frame.
- 3. Read the desired page into the (newly) free frame. Update the page and frame tables.
- 4. Restart the process.

03/26/2010

CSCI 315 Operating Systems Design

Page Replacement Algorithms

- Goal: Produce a low page-fault rate.
- Evaluate algorithm by running it on a particular string of memory references (*reference string*) and computing the number of page faults on that string.
- The reference string is produced by tracing a real program or by some stochastic model. We look at every address produced and strip off the page offset, leaving only the page number. For instance:

1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

03/26/2010

CSCI 315 Operating Systems Design

FIFO Page Replacement

- Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5.
- 3 frames (3 pages can be in memory at a time per process)

2 4

4 frames

FIFO Replacement \Rightarrow Belady's Anomaly: more frames, *more* page faults.

03/26/2010

CSCI 315 Operating Systems Design

Optimal Algorithm

- Replace the page that will not be used for longest period of time. (How can you know what the future references will be?)
- 4 frames example: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

· Used for measuring how well your algorithm performs.

03/26/2010

CSCI 315 Operating Systems Design

