KNELL UNIVERSITY

Computer Science
CSCI 315 Operating Systems Design

Virtual Memory

Notice: The slides for this lecture have been largely based on those accompanying an earlier edition
of the course text Operating Systems Concepts with Java, by Silberschatz, Galvin, and Gagne. Many,
if not all, of the illustrations contained in this presentation come from this source.

03/26/2010 CSCI 315 Operating Systems Design 1

Virtual Memory

* Virtual memory — separation of user logical memory
from physical memory.
— Only part of the program needs to be in memory for execution.

— Logical address space can therefore be much larger than
physical address space.
— Allows address spaces to be shared by several processes.

— Allows for more efficient process creation.

* Virtual memory can be implemented via:
— Demand paging
— Demand segmentation

03/26/2010

CSCI 315 Operating Systems Design

Virtual Memory
Larger than Physical Memory

page 0

page 1

page 2

memory
map
page n physical
mamory
virtual
memory

03/26/2010 CSCI 315 Operating Systems Design

Demand Paging

* Bring a page into memory only when it is

needed.

— Less I/0O needed.

— Less memory needed.
— Faster response.

— More users.

* Page is needed (there is a reference to it):
— invalid reference = abort.
— not-in-memory = bring to memory.

03/26/2010

CSCI 315 Operating Systems Design

Transfer of a Paged Memory to
Contiguous Disk Space

program __ swapout o] 100 200 31
’ 4['_'1 5& GIﬁ 7['_':||
8] 9[J10[] 11|:|:

12[]13[]14[J15[]

DrO%’am }\ swap in 15D17;]13|_—r|1g|;|
20[]21[J22[]23[]

main
memory

03/26/2010 CSCI 315 Operating Systems Design

Valid-Invalid Bit

* With each page table entry a valid—invalid bit is associated
(1 = in-memory, 0 = not-in-memory)

¢ Initially valid—invalid but is set to 0 on all entries.
* Example of a page table snapshot.
Frame # valid-invalid bit

1

Olalala

o

page table

* During address translation, if valid—invalid bit in page table entry is 0 = page
fault.

03/26/2010 CSCI 315 Operating Systems Design

Page Table when some pages are not
in Main Memory

0 _
1
o A 2
valid - invalid - 1
1 B 8
2 c 4 &
3| b =
4 E 8 &
7
5 F
8
6 G
9 F
7 H
10
logical page lable —
memory n
12
13
14
15
physical memory

03/26/2010 CSCI 315 Operating Systems Design

Page Fault

= |Ifthere is ever a reference to a page, first reference will trap to OS =
page fault.

= OS looks at page table to decide:
— If it was an invalid reference = abort.
— Ifit was a reference to a page that is not in memory, continue.

= Get an empty frame.
= Swap page into frame.
» Correct the page table and make validation bit = 1.

» Restart the instruction that caused the page fault.

03/26/2010 CSCI 315 Operating Systems Design

Steps in Handling a Page Fault

page is on
— backing store
\ - ____’
operating i
system .
(2
loie_rgrloo trap
(1)
load M e———N i,
(6)
restart page table
instruction |
free frame - — =
(s) |
resel'page hrin'g in
table missing page
physical
memory

03/26/2010 CSCI 315 Operating Systems Design 9

No free frame: now what?

» Page replacement: Are all those pages in

memory being referenced? Choose one to swap

back out to disk and make room to load a new
page.
— Algorithm: How you choose a victim.

— Performance: Want an algorithm that will result in
minimum number of page faults.

» Side effect: The same page may be brought in
and out of memory several times.

03/26/2010 CSCI 315 Operating Systems Design

10

10

Performance of Demand Paging

« Page Fault Rate: 0<p<1.0
— if p = 0 no page faults.
— if p =1, every reference is a fault.

- Effective Access Time (EAT):
EAT =[(1 - p) (memory access)] + [p (page fault overhead)]

where:

page fault overhead = [swap page out] + [swap page in]
+ [restart overhead]

03/26/2010 CSCI 315 Operating Systems Design 11

11

Page Replacement

* Prevent over-allocation of memory by modifying page-
fault service routine to include page replacement.

+ Use modify (dirty) bit to reduce overhead of page
transfers — only modified pages are written to disk.

* Page replacement completes separation between logical
memory and physical memory — large virtual memory
can be provided on a smaller physical memory.

03/26/2010 CSCI 315 Operating Systems Design 12

12

Need For Page Replacement

valid—invalid
o H frame bit 0 | monitor
v i
1| toadm i l
PC —b| I
2| it B 2| o
5|v
3 M i 3 H
logical memory page table 4| loadM
for user 1 for user 1
5 J
6 A
valid—invalid 7 E
0 A frame , bit
. v physical
1 B 6| v memory
2 D |
2| v
3 E 71 v
logical memory page table
for user 2 for user 2
03/26/2010 CSCI 315 Operating Systems Design

13

13

Basic Page Replacement

1. Find the location of the desired page on disk.

2. Find a free frame:
- If there is a free frame, use it.
- If there is no free frame, use a page replacement
algorithm to select a victim frame.

3. Read the desired page into the (newly) free frame.
Update the page and frame tables.

4. Restart the process.

03/26/2010 CSCI 315 Operating Systems Design 14

14

03/26/2010

Page Replacement

frame, , valid—invalid bit
L | v
change
oli to invalid
flv
reset page
table for
page table
new page

swap out
victim

o=

i L=
victim

(S

desired
page in

physical
memory

CSCI 315 Operating Systems Design

15

15

Page Replacement Algorithms

» Goal: Produce a low page-fault rate.

» Evaluate algorithm by running it on a particular
string of memory references (reference string)
and computing the number of page faults on that
string.

» The reference string is produced by tracing a
real program or by some stochastic model. We
look at every address produced and strip off the
page offset, leaving only the page number. For
instance:

1,2,3,4,1,2,5,1,2,3,4,5

03/26/2010 CSCI 315 Operating Systems Design 16

16

Graph of Page Faults Versus The

Number of Frames

number of page faults

number of frames

03/26/2010

CSCI 315 Operating Systems Design

17

17

FIFO Page Replacement

+ Referencestring: 1,2, 3,4,1,2,5,1,2, 3,4, 5.
= 3 frames (3 pages can be in memory at a time per process)

1 4 5

2 1 3 9page faults
* 4 frames ’ 2 4

1 5 4

2 1 5 10 page faults

3 2

4 3

* FIFO Replacement = Belady's Anomaly: more frames, more
page faults.

03/26/2010 CSCI 315 Operating Systems Design

18

18

FIFO Page Replacement

| reference string

7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1
2| (2] [4] [4] [4] [O] o] 9
HjORC RO ERERERERERE Kk 1 19 (o
HREERE KRR CRCRERE

| page frames

03/26/2010 CSCI 315 Operating Systems Design

19

19

FIFO (Belady’s Anomaly)

16

14
2
S
< 10 \.
° 8
@ \
e
€ 6
3
c

4

2

1 2 3 4 5 6
number of frames

03/26/2010

CSCI 315 Operating Systems Design

20

20

Optimal Algorithm

* Replace the page that will not be used for longest period
of time. (How can you know what the future references

will be?)

* 4 frames example: 1,2,3,4,1,2,5,1,2,3,4,5

4

6 page faults

[o]e]w]-]

5

» Used for measuring how well your algorithm performs.

03/26/2010

CSCI 315 Operating Systems Design 21

21

Optimal Page Replacement

reference string

7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1
ElnE 2]
o] [of (o [o] @ [4 B B B
BN]]

page frames

03/26/2010 CSCI 315 Operating Systems Design 22

22

