Computer Stierce oMY

CSCI 315 Operating Systems Design

Allocation of Frames & Thrashing
(Virtual Memory)

04/02/2010 CSCI 315 Operating Systems Design

LRU Algorithm

+ Reference string: 1,2,3,4,1,2,5,1,2,3,4,5

5

[>]e]~]~

+ Counter implementation:
— Every page entry has a counter; every time page is referenced through
this entry, copy the clock into the counter.
— When a page needs to be changed, look at the counters to determine
which are to change.

04/02/2010 CSCI 315 Operating Systems Design

LRU Page Replacement

| reference string

7 o 1 2 0 3 0 4 2 3 0 38 2 1 2 0 1 7 0 1
HEEyE 4] [4] [4] [© ol
o] e fef o fel [of o o [o [0
NN KR E N E R ENERERE 2

page frames ‘

04/02/2010 CSCI 315 Operating Systems Design

LRU Algorithm (Cont.)

« Stack implementation — keep a stack of
page numbers in a double link form:
— Page referenced:

* move it to the top
* requires 6 pointers to be changed

— No search for replacement.

04/02/2010 CSCI 315 Operating Systems Design

Use of a Stack to Record
the Most Recent Page References

reference string

4 7 0 7 1 o 1 2 1 2 7 1 2

t

2 7 b
1 2
0 1
7 0
4 4
|_stack before a stack after b

04/02/2010 CSCI 315 Operating Systems Design

LRU and Belady’s Anomaly

* LRU does not suffer from Belady’s Anomaly
(OPT doesn'’t either).

* It has been shown that algorithms in a class
called stack algorithms can never exhibit
Belady’s Anomaly.

« A stack algorithm is one for which the set of
pages in memory for n frames is a subset of the
pages that Could be in memory for n+/ frames.

04/02/2010 CSCI 315 Operating Systems Design

LRU Approximation Algorithms

+ Reference bit
— With each page associate a bit, initially =0
— When page is referenced bit set to 1.
— Replace the one which is O (if one exists). We do not know the
order, however.

« Second chance
Need reference bit.
Clock replacement.
If page to be replaced (in clock order) has reference bit = 1.
then:
« set reference bit 0.

* leave page in memory.
* replace next page (in clock order), subject to same rules.

04/02/2010 CSCI 315 Operating Systems Design

04/02/2010

Second-Chance (clock)
Page-Replacement Algorithm

ra!s‘;_r-.\nca pages ralal;en:e p:g?_\

its its

5) © [
o v N R
Ol = L]
o v v

o =] [] = L[]
o [¥
B L] e L]

v v
o [] =] []
o [o [

v v
LV
cular queue of pages circular queue of pages

(a) (b)

CSCI 315 Operating Systems Design

Counting Algorithms

» Keep a counter of the number of references that
have been made to each page.

* LFU Algorithm: Replaces page with smallest
count. The counters should be “aged”: pages
that are referenced many times but only for a
small period of time would hang around
otherwise.

« MFU Algorithm: Based on the argument that
the page with the smallest count was probably
just brought in and has yet to be used.

04/02/2010 CSCI 315 Operating Systems Design

Allocation of Frames

» Each process needs a minimum number of
pages.

* There are two major allocation schemes:
— fixed allocation
— priority allocation

04/02/2010 CSCI 315 Operating Systems Design

10

10

Fixed Allocation

s; = size of process p;
S=3s
m = total number of frames

. S;
a; = allocation for p; = S’ xm -<

* Equal allocation - e.g., if 100 frames and 5 processes, give
each 20 pages.

» Proportional allocation — Allocate according to the size of
process.

m=64
s; =10
5, =127
10
=——x64=~5
#=137
127

8, = x64~59
137

04/02/2010

CSCI 315 Operating Systems Design

1"

11

Priority Allocation

» Use a proportional allocation scheme
using priorities rather than size.

* If process P; generates a page fault,
— select for replacement one of its frames.

— select for replacement a frame from a process
with lower priority number.

04/02/2010

CSCI 315 Operating Systems Design 12

12

Global vs. Local Allocation

« Global replacement — process selects a
replacement frame from the set of all
frames; one process can take a frame from
another.

- Local replacement — each process selects
from only its own set of allocated frames.

04/02/2010 CSCI 315 Operating Systems Design 13

13

Thrashing

« |f a process does not have “enough” pages, the
page-fault rate is very high. This leads to:
— Low CPU utilization.

— Operating system thinks that it needs to increase the
degree of multiprogramming.

— Another process added to the system.

* Thrashing = a process is busy swapping pages
in and out.

04/02/2010 CSCI 315 Operating Systems Design 14

14

Thrashing

[E—

thrashing

CPU utilization

degree of multiprogramming

* Why does paging work?
Locality model
— Process migrates from one locality to another.
— Localities may overlap.

* Why does thrashing occur?
Y size of locality > total memory size

04/02/2010 CSCI 315 Operating Systems Design

15

15

Locality in Memory-Reference Pattern

04/02/2010

34
a2
30 f— ol B2
P Al
T
i
|
o -
e _—
i ™
T T
I alli b iF I
= gt e '|i| |! |
i Bt Ll | et -
TR '
" ; mpe g
£ 20 : —
E e 4 ll
H LR T " s
L3 9 g e o '
CXBCUBON BMe ———

CSCI 315 Operating Systems Design

16

16

Working-Set Model

* A =working-set window = a fixed number of page
references.

* WSS, (working set of process P) =
total number of pages referenced in the most recent A
(varies in time)
— if A too small will not encompass entire locality.
— if A too large will encompass several localities.
— if A = o = will encompass entire program.

+ D =% WSS, = total demand frames

e ifD>m= Thrashing <<

* Policy if D > m, then suspend one of the processes.

04/02/2010 CSCI 315 Operating Systems Design

17

17

Working-set model

page reference table

...2615777751623412344434344413234443444...

| |
| i
ws(t,) = {1 2567} WS(t,) = {3,4)

ty

04/02/2010 CSCI 315 Operating Systems Design 18

18

Keeping Track of the Working Set

* Approximate with interval timer + a reference bit
* Example: A = 10,000

Timer interrupts after every 5000 time units.

Keep in memory 2 bits for each page.

Whenever a timer interrupts copy and sets the values of all
reference bits to 0.

If one of the bits in memory = 1 = page in working set.
* Why is this not completely accurate?

* Improvement = 10 bits and interrupt every 1000 time
units.

04/02/2010 CSCI 315 Operating Systems Design

19

19

Page-Fault Frequency Scheme

04/02/2010

“page-faull rate

A

increase number
of frames
\ upper bound

lower bound
\ decrease number
of frames

number of frames

Establish “acceptable” page-fault rate.
— If actual rate too low, process loses frame.
— If actual rate too high, process gains frame.

CSCI 315 Operating Systems Design

20

20

Memory-mapped Files

* Memory mapping a file can be accomplished by mapping
a disk block to one or more pages in memory.

* A page-sized portion of the file is read from the file
system into a physical page. Subsequent read () and
write () operations are handled as memory (not disk)
accesses.

* Writing to the file in memory is not necessarily
synchronous to the file on disk. The file can be
committed back to disk when it's closed.

04/02/2010 CSCI 315 Operating Systems Design 21

21

Memory-mapped Files

---------- -»' 3 aoweesp sy
1 -___________—_—_ ———————————— = B pp———— T 1
o R R 2
CORN CECTECEITTEL N B 4 I R N 3
g """""""" L 1 —————————————— 4
""""""" - ;ﬂ“ A L 5
B Mpesesad A 2 6
IA__‘_i“__“____’ 4 """'4:""
process A T z T
virtual memory
process B
|1‘2‘3‘4I5[GI virtual memory
disk file
04/02/2010 CSCI 315 Operating Systems Design

22

22

Prepaging

« Prepaging: In order to avoid the initial number of page
faults, the system can bring into memory all the pages
that will be needed all at once.

» This can also be applied when a swapped-out process is
restarted. The smart thing to do is to remember the
working set of the process.

* One question that arises is whether all the pages
brought in will actually be used...

* |s the cost of prepaging less than the cost of servicing
each individual page fault?

04/02/2010 CSCI 315 Operating Systems Design 23

23

