Computer Stience ¢ ROHTY

CSCI 315 Operating Systems Design

Virtual Memory Wrap-up;
File System Interface

04/05/2010 CSCI 315 Operating Systems Design

Memory-mapped Files

* Memory mapping a file can be accomplished by mapping
a disk block to one or more pages in memory.

* A page-sized portion of the file is read from the file
system into a physical page. Subsequent read () and
write () operations are handled as memory (not disk)
accesses.

* Writing to the file in memory is not necessarily
synchronous to the file on disk. The file can be
committed back to disk when it's closed.

04/05/2010 CSCI 315 Operating Systems Design 2

Memory-mapped Files

---------- -»' 3 b sy
1 -___________—_—_ ———————————— = B pp———— T 1
o R R 2
CORN CECTECEITTEL N B 4 I R N 3
g """""""" L 1 —————————————— 4
""""""" - ;ﬂ“ A L 5
B Mpesesad A 2 6
IA__‘_i“__‘______’ 4 ""'__4:___|
process A B i 2 T
virtual memory
process B
|1‘2‘3‘4I5[61 virtual memory
disk file

04/05/2010 CSCI 315 Operating Systems Design

Prepaging

« Prepaging: In order to avoid the initial number of page
faults, the system can bring into memory all the pages
that will be needed all at once.

» This can also be applied when a swapped-out process is
restarted. The smart thing to do is to remember the
working set of the process.

* One question that arises is whether all the pages
brought in will actually be used...

* |s the cost of prepaging less than the cost of servicing
each individual page fault?

04/05/2010 CSCI 315 Operating Systems Design 4

04/05/2010

File System Topics

File Concept

Access Methods
Directory Structure
File System Mounting
File Sharing
Protection

CSCI 315 Operating Systems Design

File Concept

« Afile is a named collection of related
information recorded on secondary storage.

“Contiguous” logical address space.
» File types:
— Data:

* nuMeric.
» character.
+ binary.

— Program (executable).

04/05/2010 CSCI 315 Operating Systems Design

File Structure

* None: just a sequence of words or bytes.

» Simple record structure:
— Lines,
— Fixed length,
— Variable length.
* Complex Structures:
— Formatted document,
— Relocatable load file.
» Can simulate last two with first method by inserting
appropriate control characters.
* Who decides:
— Operating system,
— Program.

04/05/2010 CSCI 315 Operating Systems Design

File Attributes

* Name - only information kept in human-readable form.

* Type — needed for systems that support different types.

* Location — pointer to file location on device.

» Size — current file size.

* Protection — controls who can do reading, writing,
executing.

+ Time, date, and user identification — data for
protection, security, and usage monitoring.

mm) Information about files is kept in the directory
structure, which is maintained on the disk.

04/05/2010 CSCI 315 Operating Systems Design

File Operations

» Create.

* Write.

* Read.

* Seek.

* Delete.

* Truncate (reset size to 0, keep current attributes).

* Open(F;) — search the directory structure on disk for
entry F;, and move the content of entry to memory.

» Close (F;) — move the content of entry F;in memory to
directory structure on disk.

04/05/2010 CSCI 315 Operating Systems Design

File Types: Name and Extension

file type usual extension function
executable exe, com, bin read to run machine-
or none language program
object obj, o compiled, machine language,
not linked
source code ¢, cc, java, pas, source code in various
asm, a languages
batch bat, sh commands to the command
interpreter
text txt, doc textual data, documents
word processor | wp, lex, rri, various word-processor
doc formats
library lib, a, so, dll, libraries of routines for
mpeg, mov, rm programmers
print or view are, zip, tar ASCII or binary file in a
format for printing or
viewing
archive are, zip, tar related files grouped into

one file, sometimes com-
pressed, for archiving
or storage

multimedia mpeg, mov, rm binary file containing
audio or A/V information

04/05/2010 CSCI 315 Operating Systems Design

10

10

Access Methods

Direct Access

“

[

- Sequential Access J read next

write next

reset

no read after last write
(rewrite)

read n

write n

position to n
read next
write next

rewrite n

n = relative block number

04/05/2010

CSCI 315 Operating Systems Design

1"

11

Sequential-access File

L. current position
beginning

end

e rewind :|:
read or write =

04/05/2010 CSCI 315 Operating Systems Design

12

12

Simulation of Sequential Access
on a Direct-access File

sequential access implementation for direct access |
|
reset cp =0,
read next read cp;
cp = cp+1;
write next write cp,
cp = cp+1;
04/05/2010 CSCI 315 Operating Systems Design

13

13

Example of Index
and Relative Files

logical record
last name number
Adams
Arthur
Asher Smith, John social-securityl age
Smith &
index file relative file
04/05/2010 CSCI 315 Operating Systems Design

14

14

Directory Structure

Directory: a symbol table that translates file names into
directory entries.

ping . :]
ifconfig >< %

mount

. . I:I
—
find —

Both the directory structure and the files reside on disk.
Backups of these two structures are kept on tapes.

04/05/2010 CSCI 315 Operating Systems Design

Partitions and Directories
(File system organization)

directory directory
artition A <
: files r disk 2
h cisk 1
\
directory partition C < files 3
partition B < ;
files
- disk 3
L -
w -
04/05/2010 CSCI 315 Operating Systems Design

16

16

04/05/2010

Operations on Directories

Search for afile.

Create a file.

Delete a file.

List a directory.

Rename a file.

Traverse the file system.

CSCI 315 Operating Systems Design

17

17

Goals of Directory Logical
Organization

» Efficiency — locating a file quickly.

* Naming — convenient to users.
— Two users can have same name for different files.
— The same file can have several different names.

» Grouping — logical grouping of files by
properties, (e.g., all Java programs, all games,

...)

04/05/2010

CSCI 315 Operating Systems Design 18

18

Single-Level Directory

A single directory for all users.

directory‘ cat bo a test data | mail | cont hex rscords‘

bbbl

files Q a;J r\) f\) ,_) \\) .'_) \)

!

L

04/05/2010

Drawbacks:
Naming problem
Grouping problem

CSCI 315 Operating Systems Design

19

19

Two-Level Directory

A separate directory for each user.

user file
directory | ¢at ' bo |
p

master
file
directory

user 1 | user2 | user 3 | user 4 ‘

A\ 4

te a data H a | test | | X | data | a
A

T T T

Q000

04/05/2010

» Path name.

» Can have the same file name for different user.
» Efficient searching.

* No grouping capability.

CSCI 315 Operating Systems Design

)0 00 009

20

20

Tree-Structured Directories

root | spell | bin programsl
/ v
stat | mail ‘ dist | ‘ find |counr hex ‘reorder‘ ‘ p ‘ e | mail

¢ N N A _.
O Q000 \‘/ >

prog | copy prt | exp ‘ reorder| list | hex | count

\\ XK \l) <l>

list objf ‘ spell H alf H Fasi'l first

RN

04/05/2010 CSCI 315 Operating Systems Design

21

21

Tree-Structured Directories
(Cont.)

- Efficient searching.
» Grouping Capability.

» Current directory (working directory):
— cd /spell/mail/prog,

— type list.

04/05/2010 CSCI 315 Operating Systems Design

22

22

Tree-Structured Directories
(Cont.)

« Absolute or relative path name.

+ Creating a new file is done in current directory by default.

+ Delete afile
rm <file-name>

+ Creating a new subdirectory is done in current directory.
mkdir <dir-name>

Example: if in current directory /mail

mkdir count

| prog | copy | prt |exp|count|

Deleting “mail” = deleting the entire subtree rooted by “mail”.

04/05/2010 CSCI 315 Operating Systems Design

23

23

Acyclic-Graph Directories

Have shared subdirectories and files.

root | dict | spelf

‘ list | all | w |ccunf| wam‘s

Ch
A4

Y

‘0O O

04/05/2010 CSCI 315 Operating Systems Design

24

24

Acyclic-Graph Directories
(Cont.)

» Two different names (aliasing).
« If dict deletes list = dangling pointer.

Solutions:

— Backpointers, so we can delete all pointers.
Variable size records a problem.

— Backpointers using a daisy chain
organization.

— Entry-hold-count solution.

04/05/2010 CSCI 315 Operating Systems Design 25

25

04/05/2010

General Graph Dlrectory

ot (Lot [|

l

QD \

| text ‘ mail lco flbmkl ‘bookl maf hexl hyp ‘
4 ! !
Q @

avi | count | unhex| hex

QD (@)

CSCI 315 Operating Systems Design

26

26

General Graph Directory (Cont.)

* How do we guarantee no cycles?
— Allow only links to file not subdirectories.
— Garbage collection.

— Every time a new link is added use a cycle
detection
algorithm to determine whether it is OK.

04/05/2010 CSCI 315 Operating Systems Design 27

27

File System Mounting

» A file system (partition) must be mounted before
it can be accessed.

« A unmounted file system needs to be attached
to a mount point before it can be accessed.

existing unmounted

04/05/2010 CSCI 315 Operating Systems Design 28

28

File Sharing

» Sharing of files on multi-user systems is desirable.
« Sharing may be done through a protection scheme.

* On distributed systems, files may be shared across a
network.

* Network File System (NFS) is a common distributed file-
sharing method.

04/05/2010 CSCI 315 Operating Systems Design 29

29

Protection

File owner/creator should be able to control:

— what can be done,
— by whom.

Types of access:
— Read,

— Write,

— Execute,

— Append,

Delete,

— List.

04/05/2010

CSCI 315 Operating Systems Design

30

Access Lists and Groups

Mode of access: read, write, execute
Three classes of users

RWX
a) owner access 7=111
RWX
b) group access 6= 110
RWX
c) public access 1= 001

Ask manager to create a group (unique name), say G, and add some
users to the group.

For a particular file (say game) or subdirectory, define an appropriate

access.
owrw rT up puplic

chmod 781 game

Associate a group with a file. chgrp G game

04/05/2010

CSCI 315 Operating Systems Design

31

31

