BUCKNELL UNIVERSITY Computer Science

CSCI 315 Operating Systems Design

Virtual Memory Wrap-up; File System Interface

04/05/2010

CSCI 315 Operating Systems Design

Memory-mapped Files

- Memory mapping a file can be accomplished by mapping a disk block to one or more pages in memory.
- A page-sized portion of the file is read from the file system into a physical page. Subsequent read() and write() operations are handled as memory (not disk) accesses.
- Writing to the file in memory is not necessarily synchronous to the file on disk. The file can be committed back to disk when it's closed.

04/05/2010

CSCI 315 Operating Systems Design

Prepaging

- Prepaging: In order to avoid the initial number of page faults, the system can bring into memory all the pages that will be needed all at once.
- This can also be applied when a swapped-out process is restarted. The smart thing to do is to remember the working set of the process.
- One question that arises is whether all the pages brought in will actually be used...
- Is the cost of prepaging less than the cost of servicing each individual page fault?

04/05/2010

CSCI 315 Operating Systems Design

File System Topics

- File Concept
- · Access Methods
- Directory Structure
- File System Mounting
- File Sharing
- Protection

04/05/2010

CSCI 315 Operating Systems Design

File Concept

- A file is a named collection of related information recorded on secondary storage.
- "Contiguous" logical address space.
- File types:
 - Data:
 - numeric.
 - · character.
 - binary.
 - Program (executable).

04/05/2010

CSCI 315 Operating Systems Design

File Structure

- · None: just a sequence of words or bytes.
- Simple record structure:
 - Lines,
 - Fixed length,
 - Variable length.
- Complex Structures:
 - Formatted document,
 - Relocatable load file.
- Can simulate last two with first method by inserting appropriate control characters.
- · Who decides:
 - Operating system,
 - Program.

04/05/2010

CSCI 315 Operating Systems Design

File Attributes

- Name only information kept in human-readable form.
- Type needed for systems that support different types.
- · Location pointer to file location on device.
- Size current file size.
- Protection controls who can do reading, writing, executing.
- Time, date, and user identification data for protection, security, and usage monitoring.
 - Information about files is kept in the directory structure, which is maintained on the disk.

04/05/2010

CSCI 315 Operating Systems Design

File Operations

- Create
- Write
- · Read.
- Seek
- Delete
- Truncate (reset size to 0, keep current attributes).
- Open(F_i) search the directory structure on disk for entry F_i, and move the content of entry to memory.
- Close (F_i) move the content of entry F_i in memory to directory structure on disk.

04/05/2010

CSCI 315 Operating Systems Design

File Types: Name and Extension

file type	usual extension	function	
executable	exe, com, bin or none	read to run machine- language program	
object	obj, o	compiled, machine language, not linked	
source code	c, cc, java, pas, asm, a	source code in various languages	
batch	bat, sh	commands to the command interpreter	
text	txt, doc	textual data, documents	
word processor	wp, tex, rrf, doc	various word-processor formats	
library	lib, a, so, dll, mpeg, mov, rm	libraries of routines for programmers	
print or view	arc, zip, tar	ASCII or binary file in a format for printing or viewing	
archive	arc, zip, tar	related files grouped into one file, sometimes com- pressed, for archiving or storage	
multimedia	mpeg, mov, rm	binary file containing audio or A/V information	

04/05/2010

CSCI 315 Operating Systems Design

Simulation of Sequential Access on a Direct-access File

sequential access	implementation for direct access
reset	cp = 0;
read next	read cp ; cp = cp+1;
write next	write cp ; $cp = cp+1$;

04/05/2010

CSCI 315 Operating Systems Design

Operations on Directories

- · Search for a file.
- · Create a file.
- · Delete a file.
- · List a directory.
- · Rename a file.
- Traverse the file system.

04/05/2010

CSCI 315 Operating Systems Design

Goals of Directory Logical Organization

- Efficiency locating a file quickly.
- Naming convenient to users.
 - Two users can have same name for different files.
 - The same file can have several different names.
- Grouping logical grouping of files by properties, (e.g., all Java programs, all games, ...)

04/05/2010

CSCI 315 Operating Systems Design

Single-Level Directory

A single directory for all users.

Drawbacks:

Naming problem Grouping problem

04/05/2010

CSCI 315 Operating Systems Design

Two-Level Directory

A separate directory for each user.

- Path name.
- Can have the same file name for different user.
- · Efficient searching.
- No grouping capability.

04/05/2010

CSCI 315 Operating Systems Design

Tree-Structured Directories (Cont.)

- · Efficient searching.
- · Grouping Capability.
- Current directory (working directory):
 - cd /spell/mail/prog,
 - type list.

04/05/2010

CSCI 315 Operating Systems Design

Tree-Structured Directories (Cont.)

- · Absolute or relative path name.
- · Creating a new file is done in current directory by default.
- Delete a file

rm <file-name>

Creating a new subdirectory is done in current directory.

mkdir <dir-name>

Example: if in current directory /mail

mkdir count

Deleting "mail" ⇒ deleting the entire subtree rooted by "mail".

04/05/2010 CSCI 315 Operating Systems Design

Acyclic-Graph Directories (Cont.)

- Two different names (aliasing).
- If *dict* deletes *list* ⇒ dangling pointer.

Solutions:

- Backpointers, so we can delete all pointers.
 Variable size records a problem.
- Backpointers using a daisy chain organization.
- Entry-hold-count solution.

04/05/2010

CSCI 315 Operating Systems Design

General Graph Directory (Cont.)

- How do we guarantee no cycles?
 - Allow only links to file not subdirectories.
 - Garbage collection.
 - Every time a new link is added use a cycle detection algorithm to determine whether it is OK.

04/05/2010

CSCI 315 Operating Systems Design

File System Mounting

- A file system (partition) must be mounted before it can be accessed.
- A unmounted file system needs to be attached to a mount point before it can be accessed.

04/05/2010

CSCI 315 Operating Systems Design

File Sharing

- · Sharing of files on multi-user systems is desirable.
- Sharing may be done through a *protection* scheme.
- On distributed systems, files may be shared across a network.
- Network File System (NFS) is a common distributed filesharing method.

04/05/2010

CSCI 315 Operating Systems Design

Protection

- · File owner/creator should be able to control:
 - what can be done,
 - by whom.
- · Types of access:
 - Read,
 - Write,
 - Execute,
 - Append,
 - Delete,
 - List.

04/05/2010

CSCI 315 Operating Systems Design

Access Lists and Groups

- · Mode of access: read, write, execute
- · Three classes of users

a) owner access $7 \Rightarrow 1 \ 1 \ 1$ RWX
b) group access $6 \Rightarrow 1 \ 1 \ 0$ RWX
c) public access $1 \Rightarrow 0 \ 0 \ 1$

- Ask manager to create a group (unique name), say G, and add some users to the group.
- For a particular file (say game) or subdirectory, define an appropriate access

Associate a group with a file: chgrp G game

04/05/2010 CSCI 315 Operating Systems Design