BUCKNELL UNIVERSITY Computer Science

CSCI 315 Operating Systems Design

I/O Systems

<u>Notice:</u> The slides for this lecture have been largely based on those accompanying an earlier edition of the course text *Operating Systems Concepts with Java*, by Silberschatz, Galvin, and Gagne. Many, if not all, of the illustrations contained in this presentation come from this source.

04/16/2010

CSCI 315 Operating Systems Design

I/O Hardware

- Incredible variety of I/O devices.
- Common concepts:
 - Port,
 - Bus (daisy chain or shared direct access),
 - Controller (host adapter).
- I/O instructions control devices.
- Devices have addresses, used by
 - Direct I/O instructions,
 - Memory-mapped I/O.

04/16/2010

CSCI 315 Operating Systems Design

Memory-Mapped I/O

The processor reads and writes data to address in its memory space, which are associated with the registers and control lines of I/O controllers.

Device I/O Port Locations on PCs (partial)

I/O address range (hexadecimal)	device	
000-00F	DMA controller	
020-021	interrupt controller	
040-043	timer	
200-20F	game controller	
2F8-2FF	serial port (secondary)	
320-32F	hard-disk controller	
378-37F	parallel port	
3D0-3DF	graphics controller	
3F0-3F7	diskette-drive controller	
3F8-3FF	serial port (primary)	

04/16/2010

CSCI 315 Operating Systems Design

Polling

- · Determines state of device:
 - command-ready,
 - busy,
 - error.
- Busy-wait cycle to wait for I/O from device: the CPU is involved in periodically checking the status of the operation.

04/16/2010

CSCI 315 Operating Systems Design

Interrupts

- CPU Interrupt request line triggered by I/O device.
- · Interrupt handler receives interrupts.
- · Maskable to ignore or delay some interrupts.
- Interrupt vector used to dispatch interrupt to correct handler:
 - Based on priority.
 - Some unmaskable.
- · Interrupt mechanism also used for exceptions.

04/16/2010

CSCI 315 Operating Systems Design

Intel Pentium Processor Event-Vector Table

vector number	description	
0	divide error	
1	debug exception	
2	null interrupt	
3	breakpoint	
4	INTO-detected overflow	
5	bound range exception	
6	invalid opcode	
7	device not available	
8	double fault	
9	coprocessor segment overrun (reserved)	
10	invalid task state segment	
11	segment not present	
12	stack fault	
13	general protection	
14	page fault	
15	(Intel reserved, do not use)	
16	floating-point error	
17	alignment check	
18	machine check	
19Đ31	(Intel reserved, do not use)	
32Ð255	maskable interrupts	

04/16/2010

CSCI 315 Operating Systems Design

Direct Memory Access (DMA)

- Used to avoid programmed I/O for large data movement.
- · Requires DMA controller.
- The controller allows for data to be transferred directly between I/O device and memory without CPU intervention.

04/16/2010

CSCI 315 Operating Systems Design

Application I/O Interface

- I/O system calls encapsulate device behaviors in generic classes.
- Device-driver layer hides differences among I/O controllers from kernel.
- · Devices vary in many dimensions:
 - Character-stream or block.
 - Sequential or random-access.
 - Sharable or dedicated.
 - Speed of operation.
 - Read-write, read only, or write only.

04/16/2010

CSCI 315 Operating Systems Design

Characteristics of I/O Devices

aspect	variation	example
data-transfer mode	character block	terminal disk
access method	sequential random	modem CD-ROM
transfer schedule	synchronous asynchronous	tape keyboard
sharing	dedicated sharable	tape keyboard
device speed	latency seek time transfer rate delay between operations	
I/O direction	read only write only readĐwrite	CD-ROM graphics controlle disk

04/16/2010

CSCI 315 Operating Systems Design

Block and Character Devices

- · Block devices include disk drives.
 - Commands include read, write, seek.
 - Raw I/O or file-system access.
 - Memory-mapped file access possible.
- Character devices include keyboards, mice, serial ports.
 - Commands include get, put.
 - Libraries layered on top allow line editing.

04/16/2010

CSCI 315 Operating Systems Design

Network Devices

- Different enough from block and character to have their own interface.
- Unix and Windows NT/9x/2000 include socket interface:
 - Separates network protocol from network operation.
 - Includes **select** functionality.
- Approaches vary widely (pipes, FIFOs, streams, queues, mailboxes).

04/16/2010

CSCI 315 Operating Systems Design

Clocks and Timers

- Provide current time, elapsed time, timer.
- If programmable interval time used for timings, periodic interrupts.
- ioctl (on UNIX) covers odd aspects of I/O such as clocks and timers.

04/16/2010

CSCI 315 Operating Systems Design

Blocking and Nonblocking I/O

- Blocking process suspended until I/O completed.
 - Easy to use and understand.
 - Insufficient for some needs.
- Nonblocking I/O call returns as much as available.
 - User interface, data copy (buffered I/O).
 - Implemented via multi-threading.
 - Returns quickly with count of bytes read or written.
- Asynchronous process runs while I/O executes.
 - Difficult to use.
 - I/O subsystem signals process when I/O completed.

04/16/2010

CSCI 315 Operating Systems Design