KNELL UNIVERSITY

Computer Science
CSCI 315 Operating Systems Design

/O Systems

Notice: The slides for this lecture have been largely based on those accompanying an earlier edition
of the course text Operating Systems Concepts with Java, by Silberschatz, Galvin, and Gagne. Many,
if not all, of the illustrations contained in this presentation come from this source.

04/19/2010 CSCI 315 Operating Systems Design 1

Application I/O Interface

» /O system calls encapsulate device behaviors in
generic classes.

* Device-driver layer hides differences among 1/O
controllers from kernel.

» Devices vary in many dimensions:
— Character-stream or block.
— Sequential or random-access.
— Sharable or dedicated.
— Speed of operation.
— Read-write, read only, or write only.

04/19/2010

CSCI 315 Operating Systems Design 2

Characteristics of /0O Devices

04/19/2010

aspect variation example
data-transfer mode character terminal
block disk
access method sequential modem
random CD-ROM
transfer schedule synchronous tape
asynchronous keyboard
sharing dedicated tape
sharable keyboard
device speed latency
seek time
transfer rate
delay between operations
I/O direction read only CD-ROM
write only graphics controller
readBwrite disk
CSCI 315 Operating Systems Design

Block and Character Devices

* Block devices include disk drives.

— Commands include read (), write(),
seek ().

— Raw 1/O or file-system access.
— Memory-mapped file access possible.

» Character devices include keyboards,
mice, serial ports.
— Commands include get (), put().
— Libraries layered on top allow line editing.

04/19/2010 CSCI 315 Operating Systems Design

Network Devices

 Different enough from block and character to
have their own interface.

* Unix and Windows NT/9x/2000 include socket
interface:

— Separates network protocol from network
operation.

— Includes select () functionality.

» Approaches vary widely (pipes, FIFOs, streams,
queues, mailboxes).

04/19/2010 CSCI 315 Operating Systems Design

Clocks and Timers

* Provide:
— current time,
— elapsed time,
— timer.

* |f programmable interval time used for timings,
periodic interrupts.

» ioctl (on UNIX) covers odd aspects of I/1O
such as clocks and timers.

04/19/2010 CSCI 315 Operating Systems Design

Blocking and Nonblocking /O

« Blocking - process suspended until I/O completed.
— Easy to use and understand.
— Insufficient for some needs.

* Nonblocking - I/O call returns as much as available.
— User interface, data copy (buffered 1/O).
— Implemented via multi-threading.
— Returns quickly with count of bytes read or written.

* Asynchronous - process runs while /0O executes.
— Difficultto use.
— /O subsystem signals process when 1/O completed.

04/19/2010 CSCI 315 Operating Systems Design

Kernel /0O Subsystem

» Scheduling
— Some I/O request ordering via per-device queue.
— Some OSs try fairness.

+ Buffering - store data in memory while
transferring between devices:
— To cope with device speed mismatch.
— To cope with device transfer size mismatch.
— To maintain “copy semantics”.

04/19/2010

CSCI 315 Operating Systems Design

No Buffering

application .
(o) R
address x | DMA
Controller)
disk
buffer |= -
(size n) [T

no copy semantics

04/19/2010 CSCI 315 Operating Systems Design 9

Buffering in Kernel Space

——>
<——

disk

DMA
application Controller
fon
address x
:> OS Kernel
buffer J ,
(size n)
buffer
(size n)
copy semantics
respected
04/19/2010 CSCI 315 Operating Systems Design

10

10

Caching in Kernel Space

application

04/19/2010

: OS Kernel
I/0O request goes C

to buffer cache
before a disk

access is made :> .

.

Kernel buffers are used as cache for the disk device.
Consequence: the EAT can be substantially reduced.

CSCI 315 Operating Systems Design 11

11

Output without Spooling

printer

(A text, time=0), (A text, time=1),
process A (A text, time=2), (A text, time=4), ﬁ %g:%
(A text, time=5), (A text, time=T7), A text
(A text, time=8), (A text, time=9) B text
A text
A text
(B text, time=3) N C text
A text
A text
A text

process C (C text, time=6)
04/19/2010 CSCI 315 Operating Systems Design

12

12

Output with Spooling

(A text, time=0), (A text, time=1),

(A text, time=2), (A text, time=4),
PIGCDSS A (A text, time=5), (A text, time=T),
(A text, time=8), (A text, time=9)

\

(B text, time=3) Spooler

process C /

(C text, time=6)

04/19/2010 CSCI 315 Operating Systems Design

printer

A text
A text
A text
A text
A text
A text
A text
A text

B text
C text

13

13

Error Handling

* OS can recover from disk read, device
unavailable, transient write failures.

» Most return an error number or code when
I/O request fails .

» System error logs hold problem reports.

04/19/2010 CSCI 315 Operating Systems Design 14

14

I/O Requests to Hardware
Operations

» Consider reading a file from disk for a
process:
— Determine device holding file.
— Translate name to device representation.
— Physically read data from disk into buffer.
— Make data available to requesting process.
— Return control to process.

04/19/2010 CSCI 315 Operating Systems Design 15

15

Life Cycle of An I/O Request

04/19/2010

process request, issue
commands 10 controller,

configure controller 1o

Bilock until intorrupted

davica controller commands

amel
VD subsystem

device
drivar

manitor davice,
intarrupt when 110
complsted

inlerrupt
handier

device

controller

140 complated,
input data avalable, or
output complated

returm from system call

fransfer datn

ratum compietion

{# appeopriate) ta process,

determine which 1D

receive interupt, store

data in devica-driver bulfer

i input, signal 1o unblock
davica driver

Intermupt
|

B

10 compilated,
genorate intermupt

CSCI 315 Operating Systems Design

16

16

STREAMS

+ STREAM - a full-duplex communication channel between a user-
level process and a device.

« A STREAM consists of:

- STREAM head interfaces with the user process

- driver end interfaces with the device
- zero or more STREAM modules between them.

+ Each module contains a read queue and a write queue.

+ Message passing is used to communicate between queues.

04/19/2010 CSCI 315 Operating Systems Design

17

17

04/19/2010

The STREAMS Structure

stream head

read queue | write queue

l read queue | write queue | |
t l modules

‘ read queue | write queue ‘ |

read queue | write queue
driver end
device
CSCI 315 Operating Systems Design 18

18

Performance

I/O a major factor in system performance:

— Demands CPU to execute device driver,
kernel I/O code.

— Context switches due to interrupts.
— Data copying.
— Network traffic especially stressful.

04/19/2010 CSCI 315 Operating Systems Design

19

19

Intercomputer Communications

04/19/2010

[character |
| typed |

i

/L

Internapt
generated

interrupt ‘

system call
complates

Intermupt
handled

handled genarated
device network
driver adapter

/" netwark
| packet |
', received |

1[i

network
adapler

network

ki
subdaemon

kernel device
driver
user contid —

process [~ gwitch

HE i

sending system

kemel
daeman switch e

receiving system

CSCI 315 Operating Systems Design

20

20

Improving Performance

Reduce number of context switches.
Reduce data copying.
Reduce interrupts by using large transfers,

smart controllers, polling.

Use DMA.
Balance CPU, memory, bus, and I/O

performance for highest throughput.

04/19/2010

CSCI 315 Operating Systems Design 21

21

Device-Functionality
Progression

ed time (generations) |

new algorithm

4

|

application code

kernel code

device-driver code
device-controller code (hardware)

ncreased abstraction

b7
o
(5]
1=
@
=
[= %
=]
g
@
=]
g
ﬂ device code (hardware)

ﬁ increased efficiency |

increased flexibility

04/19/2010

CSCI 315 Operating Systems Design

22

22

