BUCKNELL UNIVERSITY Computer Science

CSCI 315 Operating Systems Design

I/O Systems

<u>Notice:</u> The slides for this lecture have been largely based on those accompanying an earlier edition of the course text *Operating Systems Concepts with Java*, by Silberschatz, Galvin, and Gagne. Many, if not all, of the illustrations contained in this presentation come from this source.

04/19/2010

CSCI 315 Operating Systems Design

Application I/O Interface

- I/O system calls encapsulate device behaviors in generic classes.
- Device-driver layer hides differences among I/O controllers from kernel.
- · Devices vary in many dimensions:
 - Character-stream or block.
 - Sequential or random-access.
 - Sharable or dedicated.
 - Speed of operation.
 - Read-write, read only, or write only.

04/19/2010

CSCI 315 Operating Systems Design

Characteristics of I/O Devices

aspect	variation	example
data-transfer mode	character block	terminal disk
access method	sequential random	modem CD-ROM
transfer schedule	synchronous asynchronous	tape keyboard
sharing	dedicated sharable	tape keyboard
device speed	latency seek time transfer rate delay between operations	
I/O direction	read only write only readĐwrite	CD-ROM graphics controlle disk

04/19/2010

CSCI 315 Operating Systems Design

Block and Character Devices

- · Block devices include disk drives.
 - Commands include read(), write(),
 seek().
 - Raw I/O or file-system access.
 - Memory-mapped file access possible.
- Character devices include keyboards, mice, serial ports.
 - Commands include get(), put().
 - Libraries layered on top allow line editing.

04/19/2010

CSCI 315 Operating Systems Design

Network Devices

- Different enough from block and character to have their own interface.
- Unix and Windows NT/9x/2000 include <u>socket</u> interface:
 - Separates network protocol from network operation.
 - Includes **select()** functionality.
- Approaches vary widely (pipes, FIFOs, streams, queues, mailboxes).

04/19/2010

CSCI 315 Operating Systems Design

Clocks and Timers

- Provide:
 - current time,
 - elapsed time,
 - timer.
- If programmable interval time used for timings, periodic interrupts.
- ioctl (on UNIX) covers odd aspects of I/O such as clocks and timers.

04/19/2010

CSCI 315 Operating Systems Design

Blocking and Nonblocking I/O

- · Blocking process suspended until I/O completed.
 - Easy to use and understand.
 - Insufficient for some needs.
- Nonblocking I/O call returns as much as available.
 - User interface, data copy (buffered I/O).
 - Implemented via multi-threading.
 - Returns quickly with count of bytes read or written.
- Asynchronous process runs while I/O executes.
 - Difficult to use.
 - I/O subsystem signals process when I/O completed.

04/19/2010

CSCI 315 Operating Systems Design

Kernel I/O Subsystem

Scheduling

- Some I/O request ordering via per-device queue.
- Some OSs try fairness.
- Buffering store data in memory while transferring between devices:
 - To cope with device speed mismatch.
 - To cope with device transfer size mismatch.
 - To maintain "copy semantics".

04/19/2010

CSCI 315 Operating Systems Design

Error Handling

- OS can recover from disk read, device unavailable, transient write failures.
- Most return an error number or code when I/O request fails.
- System error logs hold problem reports.

04/19/2010

CSCI 315 Operating Systems Design

I/O Requests to Hardware Operations

- Consider reading a file from disk for a process:
 - Determine device holding file.
 - Translate name to device representation.
 - Physically read data from disk into buffer.
 - Make data available to requesting process.
 - Return control to process.

04/19/2010

CSCI 315 Operating Systems Design

STREAMS

- STREAM a full-duplex communication channel between a user-level process and a device.
- A STREAM consists of:
 - STREAM head interfaces with the user process
 - driver end interfaces with the device
 - zero or more STREAM modules between them.
- Each module contains a read queue and a write queue.
- Message passing is used to communicate between queues.

04/19/2010

CSCI 315 Operating Systems Design

Performance

I/O a major factor in system performance:

- Demands CPU to execute device driver, kernel I/O code.
- Context switches due to interrupts.
- Data copying.
- Network traffic especially stressful.

04/19/2010

CSCI 315 Operating Systems Design

Improving Performance

- · Reduce number of context switches.
- · Reduce data copying.
- Reduce interrupts by using large transfers, smart controllers, polling.
- Use DMA.
- Balance CPU, memory, bus, and I/O performance for highest throughput.

04/19/2010

CSCI 315 Operating Systems Design

