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Computer Science
CSCI 315 Operating Systems Design

/O Systems

Notice: The slides for this lecture have been largely based on those accompanying an earlier edition
of the course text Operating Systems Concepts with Java, by Silberschatz, Galvin, and Gagne. Many,
if not all, of the illustrations contained in this presentation come from this source.
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Application I/O Interface

» /O system calls encapsulate device behaviors in
generic classes.

* Device-driver layer hides differences among 1/O
controllers from kernel.

» Devices vary in many dimensions:
— Character-stream or block.
— Sequential or random-access.
— Sharable or dedicated.
— Speed of operation.
— Read-write, read only, or write only.
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Characteristics of /0O Devices
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aspect variation example
data-transfer mode character terminal
block disk
access method sequential modem
random CD-ROM
transfer schedule synchronous tape
asynchronous keyboard
sharing dedicated tape
sharable keyboard
device speed latency
seek time
transfer rate
delay between operations
I/O direction read only CD-ROM
write only graphics controller
readBwrite disk
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Block and Character Devices

* Block devices include disk drives.

— Commands include read (), write(),
seek ().

— Raw 1/O or file-system access.
— Memory-mapped file access possible.

» Character devices include keyboards,
mice, serial ports.
— Commands include get (), put().
— Libraries layered on top allow line editing.
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Network Devices

 Different enough from block and character to
have their own interface.

* Unix and Windows NT/9x/2000 include socket
interface:

— Separates network protocol from network
operation.

— Includes select () functionality.

» Approaches vary widely (pipes, FIFOs, streams,
queues, mailboxes).
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Clocks and Timers

* Provide:
— current time,
— elapsed time,
— timer.

* |f programmable interval time used for timings,
periodic interrupts.

» ioctl (on UNIX) covers odd aspects of I/1O
such as clocks and timers.
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Blocking and Nonblocking /O

« Blocking - process suspended until I/O completed.
— Easy to use and understand.
— Insufficient for some needs.

* Nonblocking - I/O call returns as much as available.
— User interface, data copy (buffered 1/O).
— Implemented via multi-threading.
— Returns quickly with count of bytes read or written.

* Asynchronous - process runs while /0O executes.
— Difficultto use.
— /O subsystem signals process when 1/O completed.
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Kernel /0O Subsystem

» Scheduling
— Some I/O request ordering via per-device queue.
— Some OSs try fairness.

+ Buffering - store data in memory while
transferring between devices:
— To cope with device speed mismatch.
— To cope with device transfer size mismatch.
— To maintain “copy semantics”.
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No Buffering

application .
(o) R
address x | DMA
Controller )
disk
buffer |= -
(size n) [T

no copy semantics

04/19/2010 CSCI 315 Operating Systems Design 9




Buffering in Kernel Space

——>
<——

disk

DMA
application Controller
fon
address x
:> OS Kernel
buffer J ,
(size n)
buffer
(size n)
copy semantics
respected
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Caching in Kernel Space

application
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: OS Kernel
I/0O request goes C

to buffer cache
before a disk

access is made :> .

.

Kernel buffers are used as cache for the disk device.
Consequence: the EAT can be substantially reduced.
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Output without Spooling

printer

(A text, time=0), (A text, time=1),
process A (A text, time=2), (A text, time=4), ﬁ %g:%
(A text, time=5), (A text, time=T7), A text
(A text, time=8), (A text, time=9) B text
A text
A text
(B text, time=3) N C text
A text
A text
A text

process C (C text, time=6)
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Output with Spooling

(A text, time=0), (A text, time=1),

(A text, time=2), (A text, time=4),
PIGCDSS A (A text, time=5), (A text, time=T),
(A text, time=8), (A text, time=9)

\

(B text, time=3) Spooler

process C /

(C text, time=6)
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A text
A text
A text
A text
A text
A text
A text
A text

B text
C text
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Error Handling

* OS can recover from disk read, device
unavailable, transient write failures.

» Most return an error number or code when
I/O request fails .

» System error logs hold problem reports.
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I/O Requests to Hardware
Operations

» Consider reading a file from disk for a
process:
— Determine device holding file.
— Translate name to device representation.
— Physically read data from disk into buffer.
— Make data available to requesting process.
— Return control to process.
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Life Cycle of An I/O Request
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STREAMS

+ STREAM - a full-duplex communication channel between a user-
level process and a device.

« A STREAM consists of:

- STREAM head interfaces with the user process

- driver end interfaces with the device
- zero or more STREAM modules between them.

+ Each module contains a read queue and a write queue.

+ Message passing is used to communicate between queues.
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The STREAMS Structure

stream head

read queue | write queue

l read queue | write queue | |
t l modules

‘ read queue | write queue ‘ |

read queue | write queue
driver end
device
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Performance

I/O a major factor in system performance:

— Demands CPU to execute device driver,
kernel I/O code.

— Context switches due to interrupts.
— Data copying.
— Network traffic especially stressful.
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Intercomputer Communications
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Improving Performance

Reduce number of context switches.
Reduce data copying.
Reduce interrupts by using large transfers,

smart controllers, polling.

Use DMA.
Balance CPU, memory, bus, and I/O

performance for highest throughput.
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Device-Functionality
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