| Comﬁ}]el%

El* UNIVERSITY

ence

CSCI 315 Operating Systems Design

04/23/2010

Disk Scheduling

CSCI 315 Operating Systems Design

Disk Structure

Points to consider:

Sector sizes (number of bits
per sector) should be fixed.

The density of the magnetic
material is constant on the
surface of the disk.

Size of the sector gets
smaller as the radius of the
track gets smaller.

sector

read/write head

direction of movement

>

A

The disk rotates at a

the appropriate track,

constant speed. To find a
block, the head is moved to

then the correct sector is
found as the disk rotates.

arm

and

direction of rotation

Organization of a disk surface

04/23/2010

CSCI 315 Operating Systems Design

Disk Structure

The disk rotation is given in
rotations per minute (RPM).

i i i direction of rotation
The time to find a track is o

proportional to the distance
the head must travel.

read/write head

The average time to find a
sector within a track is
roughly half the time for a
full rotation.

direction of movement

>

A

Question: If the time to
move from track 7 to track
(i+1)is given by 8, arm
assuming that the disk head
is at track O (all the way
out), could you calculate the

time to get to sector 4 in Organization of a disk surface
track 57

04/23/2010 CSCI 315 Operating Systems Design 3

Disk Structure

| Multi-surface disk ‘

direction of rotation

read/write heads

cylinder

arm

o

direction of movement

Acylinder is the collection of all
the same tracks across all the
multiple disk surfaces.

There is a time associated with
turning heads on and off so that a
different surface can be accessed.
We call this overhead the head-
switching time.

The time to move the arm to read
another cylinder is due to the
mechanics of the arm. It is
certainly much large than the
head-switching time, which is due
to electronics only.

Question: How should one
organize data across multiple
surfaces to minimize access
overhead?

04/23/2010 CSCI 315 Operating Systems Design

Disk Request

A request must specify:
— Whether the operation is input or output,
— The disk address for the transfer,
— The memory address for the transfer,
— The size of the data block to be transferred (number of bytes).

Disk requests are generated by processes. When the disk is busy serving a
request, other incoming requests must be stored for later processing. For this
purpose, the OS organizes these requests in a queue of pending requests for
that disk unit. When the disk finishes serving a request, the OS much check the
queue and if it is not empty, serve another request.

What policy should be used for dealing with the queue?

~-

Disk Scheduling

04/23/2010 CSCI 315 Operating Systems Design 5

FCFS Scheduling

Consider the following sequence of requests where each
number corresponds to a disk cylinder:

98, 183, 37, 122, 14, 124, 65, 67
queue = 98, 183, 37, 122, 14, 124, 65, 67

0 14 37 53 6567 98 122124 183 199
—————— H —

\., : o

| Question: How much does the disk head travel to serve these requests? |

‘ Question: What metric could one define to characterize performance here? '

‘ Question: How does this scheduling of requests affect the disk performance? |
04/23/2010 CSCI 315 Operating Systems Design 6

SSTF Scheduling

98, 183, 37, 122, 14, 124, 65, 67
queue = 65, 67, 37, 14, 98, 122, 124, 183

122124 183 199
1| !]
1 I |

| FCFS Total head movement = 640 |
‘ SSTF Total head movement = 236 |

T

| Question: If this is similar to SJF, does it share the same drawback? |

| Question: Is the performance of SSTF any better than that of FCFS? |

Question: Is the performance of SSTF optimal? |

04/23/2010 CSCI 315 Operating Systems Design 7

SCAN Scheduling

98, 183, 37, 122, 14, 124, 65, 67

fl-" 14 3I7 53 6567 98 122124 183 199
| | 1| | 1 | |
I

[l !
‘ FCFS Total head movement = 640 |

\ SSTF Total head movement = 236 |

l SCAN Total head movement = ? ‘

Assume the distribution of requests for cylinders is uniform. Consider the
density of requests when the head reaches one end and reverses direction.
Hmmm... few requests will be right in front of the head... The heaviest density
will be at the other end of the disk and those requests will have waited the

longest. Why not just go there first?

04/23/2010 CSCI 315 Operating Systems Design 8

C-SCAN Scheduling

98, 183, 37, 122, 14, 124, 65, 67

fl-'r 14 37 53 6567 98 122124
| 1| | 1 | |
y 1 | |

I 1 |
i ' i !
' ']

~i :
T .

When the head reaches the end of the disk, it immediately returns to cylinder 0.
The algorithm essentially treats the cylinders as a circular list that wraps

around from the final cylinder to the first one.

04/23/2010 CSCI 315 Operating Systems Design

LOOK Scheduling

98, 183, 37, 122, 14, 124, 65, 67

? 14 37 53 B567 98 122124 183 199
| | 1]
! - i !

Well, by now you have realized that scanning all the way to the extreme ends of
the disk is perhaps wasteful. In practice, one could move the head only as far
as the request that is farthest out.

04/23/2010 CSCI 315 Operating Systems Design 10

10

C-LOOK Scheduling

98, 183, 37, 122, 14, 124, 65, 67

fl-" 14 37 53 6567 98 122124 183 199
| | 1
I I I 1 | 1

L]

04/23/2010 CSCI 315 Operating Systems Design 11

11

Choosing a Disk Scheduling
Algorithm

The criteria should involve fairness and performance.
Performance depends on the number and type of requests.

Given a string of cylinder references, one could find the optimal
schedule to serve them all using, for instance, dynamic
programming. Remember, however, that computing the optimal
schedule takes time!

Another point to remember is that disk performance depends heavily
on the file allocation method, on the location of directories and
indices.

If disk scheduling is a separate OS module, it can easily be replaced.

Modern disk units don’t disclose the physical location of disk blocks,
so it can be challenging to do scheduling in the OS. Disk controllers,
however, can handle disk scheduling themselves, lessening the
burden on the OS.

04/23/2010 CSCI 315 Operating Systems Design 12

12

