KNE

Computer
CSCI 315 Operating Systems Design

IS%‘ UNIVERSITY

ence

Disk Scheduling and Management

04/26/2010

CSCI 315 Operating Systems Design

Disk Request

A request must specify:
— Whether the operation is input or output,
— The disk address for the transfer,
— The memory address for the transfer,
— The size of the data block to be transferred (number of bytes).

Disk requests are generated by processes. When the disk is busy serving a
request, other incoming requests must be stored for later processing. For this
purpose, the OS organizes these requests in a queue of pending requests for
that disk unit. When the disk finishes serving a request, the OS much check the
queue and if it is not empty, serve another request.

What policy should be used for dealing with the queue?

~-

Disk Scheduling

04/26/2010 CSCI 315 Operating Systems Design 2

FCFS Scheduling

Consider the following sequence of requests where each
number corresponds to a disk cylinder:

98, 183, 37, 122, 14, 124, 65, 67
queue = 98, 183, 37, 122, 14, 124, 65, 67

0 14 37 53 6567 98 122124 183 199
—————— H —

\., : o

| Question: How much does the disk head travel to serve these requests? |

‘ Question: What metric could one define to characterize performance here? '

‘ Question: How does this scheduling of requests affect the disk performance? |
04/26/2010 CSCI 315 Operating Systems Design 3

SSTF Scheduling

98, 183, 37, 122, 14, 124, 65, 67
queue = 65, 67, 37, 14, 98, 122, 124, 183

122124 183 199
1| !]
1 I |

| FCFS Total head movement = 640 |
‘ SSTF Total head movement = 236 |

T

| Question: If this is similar to SJF, does it share the same drawback? |

| Question: Is the performance of SSTF any better than that of FCFS? |

Question: Is the performance of SSTF optimal? |

04/26/2010 CSCI 315 Operating Systems Design 4

SCAN Scheduling

98, 183, 37, 122, 14, 124, 65, 67

fl-" 14 3I7 53 6567 98 122124 183 199
| | 1| | 1 | |
I

[l !
‘ FCFS Total head movement = 640 |

\ SSTF Total head movement = 236 |

l SCAN Total head movement = ? ‘

Assume the distribution of requests for cylinders is uniform. Consider the
density of requests when the head reaches one end and reverses direction.
Hmmm... few requests will be right in front of the head... The heaviest density
will be at the other end of the disk and those requests will have waited the

longest. Why not just go there first?

04/26/2010 CSCI 315 Operating Systems Design 5

C-SCAN Scheduling

98, 183, 37, 122, 14, 124, 65, 67

fl-'r 14 37 53 6567 98 122124
| 1| | 1 | |
y 1 | |

I 1 |
i ' i !
' ']

~i :
T .

When the head reaches the end of the disk, it immediately returns to cylinder 0.
The algorithm essentially treats the cylinders as a circular list that wraps

around from the final cylinder to the first one.

04/26/2010 CSCI 315 Operating Systems Design

LOOK Scheduling

98, 183, 37, 122, 14, 124, 65, 67

? 14 37 53 B567 98 122124 183 199
| | 1]
! - i !

Well, by now you have realized that scanning all the way to the extreme ends of
the disk is perhaps wasteful. In practice, one could move the head only as far
as the request that is farthest out.

04/26/2010 CSCI 315 Operating Systems Design

C-LOOK Scheduling

98, 183, 37, 122, 14, 124, 65, 67

fl-'r 14 37 53 6567 98 122124
| | 1
I I

L]

04/26/2010 CSCI 315 Operating Systems Design

Choosing a Disk Scheduling
Algorithm

The criteria should involve fairness and performance.
Performance depends on the number and type of requests.

Given a string of cylinder references, one could find the optimal
schedule to serve them all using, for instance, dynamic
programming. Remember, however, that computing the optimal
schedule takes time!

Another point to remember is that disk performance depends heavily
on the file allocation method, on the location of directories and
indices.

If disk scheduling is a separate OS module, it can easily be replaced.

Modern disk units don’t disclose the physical location of disk blocks,
so it can be challenging to do scheduling in the OS. Disk controllers,
however, can handle disk scheduling themselves, lessening the
burden on the OS.

04/26/2010 CSCI 315 Operating Systems Design 9

Disk Formatting

A brand new magnetic disk is a blank slate. There
is no such thing as sectors. Tracks exist only as
abstractions: we know they are actually created by
how disk heads move over the disk surface (step
motors).

Before a disk unit can be used as we've discussed,
it is necessary to divide each track into sectors,
what is known as low-level formatting.

01010101011010700100101110101004
10000111010100100101110101001
0111010100100101110101001
01110101001001011101
11011001011

This formatting operation fills the disk with a
special data structure for each sector:

header data trailer

L

v
error-correcting code

04/26/2010 CSCI 315 Operating Systems Design

10

10

Disk Formatting

header data trailer

sizeof (header)+sizeof (trailer) = overhead

. overhead
ratio = -
overhead + sizeof (data)
256
sizeof (data)= 512
1,024

sector

track

Larger sectors => less disk space used for

Organization of a disk surface

overhead.

Question: What is the potential drawback?

04/26/2010 CSCI 315 Operating Systems Design

1"

11

Disk Formatting

A disk can be further subdivided into partitions: a contiguous
group of cylinders.

Each partition is viewed by the operating system as a logical
disk.

Next, we’ll look at the partition table from a running Linux
installation.

04/26/2010 CSCI 315 Operating Systems Design 12

12

Example: Partition Table

04/26/2010 CSCI 315 Operating Systems Design

13

13

Logical Formatting

Before a partition can be used, a file-system needs to be created on the
partition. That means, file-system data structures are written to the
disk.

Many different types of file-systems exist: ext2, ext3, swap, FAT,
FAT32, 1809660, etc. Read the man page of the mount command

on Linux or Solaris for more information.

One may be able to use a partition as just a sequential array of logical
blocks bypassing file-system data structures: this is called raw I/O. It
also bypasses buffer caches, file locks, pre-fetching, file names,
space allocation, and directories.

04/26/2010 CSCI 315 Operating Systems Design 14

14

File System Types in Linux

Excerpt from the mount man page:

04/26/2010 CSCI 315 Operating Systems Design 15

15

Boot Block

The system’s primary disk unit contains a boot block that contains the
bootstrapping program that loads the OS to memeory. This program
is invoked by the computer’s minimal bootstrap program in ROM.

This boot block is often called the Master Boot Record (MBR).

Different operating systems treat the MBR in very different ways. Some
a flexible enough to install a boot loader in the MBR, so that the disk
can contain different OS in different disk partitions. The loader for
each OS is then stored at the beginning of its own partition.
Examples: Windows NT/2000/xp boot loader, Linux 1ilo and grub.

A “bootable” disk is one on which a boot block has been installed.

04/26/2010 CSCI 315 Operating Systems Design 16

16

Bad Block Management

Certain disk blocks can’t be used reliably due to
problems with the magnetic media. Rather than
just junk the entire disk, one can just mark the
bad blocks and ignore them in the allocation
procedures.

If blocks go bad after formatting, a disk check
application can take care of marking them off
(i.e. chkdsk in MS-DOS). The data in marked

blocks is irretrievably lost.

04/26/2010 CSCI 315 Operating Systems Design 17

17

Swap Space Management

Swap space can be allocated in two different ways:

1) From a single file in the normal file system. Normal file
operations are used to manipulate this file. External
fragmentation can become a problem requiring many
seeks.

2) From a swap partition. This can be much faster than

(1), but internal fragmentation can be a problem. This

problem is relatively small considering that the lifetime of

files on the swap space is small. Adding more swap,

gpv}\(fever, is not easy since it requires repartitioning the
isk.

04/26/2010 CSCI 315 Operating Systems Design 18

18

