KNE

Computer
CSCI 315 Operating Systems Design

04/30/2010

IS%‘ UNIVERSITY

ence

Protection and Security

CSCI 315 Operating Systems Design

Components of Computer Security

» User authentication — determine the identity of
an individual accessing the system.

» Access control policies — stipulate what
actions a given user is allowed to perform on the
system.

» Access control mechanisms — enforce the
system’s access control policy.

04/30/2010 CSCI 315 Operating Systems Design 2

The Reference Monitor

» Computer systems are composed of many diverse
objects that can be employed by users to accomplish
tasks (e.g. CPU, memory segments, files, printers, etc.).

* ltis the job of a reference monitor to control access to
system objects.

* The reference monitor must:
— Operate correctly
- Always be invoked
— Be tamper-proof

¢ Decisions on whether or not to allow an action are based
on the identity of the user performing the action.

04/30/2010 CSCI 315 Operating Systems Design 3

Authorization

* Authorization entails determining whether or not the
protection policy permits a given user to perform a given
action (e.g. badges at a military installation).

* Many operating systems base authorization decisions on
a user’s unique user identifier (or uid):

— Useris authenticated during log on and given an appropriate uid
(must enter valid username and password).

— The uid is used to determine which actions are authorized.

04/30/2010 CSCI 315 Operating Systems Design 4

User Authentication

» Three basic approaches:
— Knowledge-based - users prove their identity
through something that they know.
+ Example: passwords.
— Token-based — users prove their identity through
something they possess.
+ Example: passport.
— Biometric — users prove their identity through a
unique physiological characteristic.
« Example: fingerprint.

04/30/2010 CSCI 315 Operating Systems Design

Passwords

» Passwords are widely-used for user
authentication.

« Advantages:
— Easy to use, understood by most users.
— Require no special equipment.
— Offer an adequate degree of security in many
environments.
- Disadvantages:
— Users tend to choose passwords that are easy to
guess.
— Many password-cracking tools are available.

04/30/2010 CSCI 315 Operating Systems Design

Using Passwords

» User enters username and password.

» The operating system consults its table of
passwords:

Username Uid Password
Alice 12 dumptruck
Bob 7 baseball

» Match = user is assigned the corresponding uid.

* Problem: the table of passwords must be
protected.

04/30/2010 CSCI 315 Operating Systems Design

Using Passwords and One-Way
Functions

* A one-way hash of the password, h(password), is
stored in the table (not the password itself):
— h(dumptruck) = JENXPEMD
— h(baseball) = WSAWFFVI

Username Uid Hash
Alice 12 JFNXPEMD
Bob 7 WSAWFFVI

04/30/2010 CSCI 315 Operating Systems Design

Using Passwords and
One-Way Functions

» User enters username and password.
» The operating system hashes the password.

* The operating system compares the result to the
entry in the table.

» Match = user is assigned the corresponding uid.

* Advantage: password table does not have to be
protected.

* Disadvantage: dictionary attack.

04/30/2010 CSCI 315 Operating Systems Design 9

A Dictionary Attack

one:

baseball).

« An attacker can compile a dictionary of several
thousand common words and compute the hash for each

Password Hash
Baseball WSAWFFVI
Basketball | BFOQLSZAY
Football ORCVVGTS

* Look for matches between the dictionary and the
password table (WSAWFFVI tells us Bob’s password is

04/30/2010

CSCI 315 Operating Systems Design

10

10

Combating Dictionary Attacks

* Dictionary attacks are a serious problem:

— Costs an intruder very little to send tens of thousands of common
words through the one-way function and check for matches.

— Between 20 and 40 percent of the passwords on a typical
system can be cracked in this way.

« Solution #1: don’t allow users to select their own
passwords.

— System generates a random password for each user.
— Drawback:

+ Many people find system-assigned passwords hard to
remember and write them down. Example: L8f#n!.5rH’

04/30/2010 CSCI 315 Operating Systems Design 11

11

Combating Dictionary Attacks

* Solution #2: password checking
— Allow users to choose their own passwords.

— Do not allow them to use passwords that are in a common
dictionary.

- Solution #3: salt the password table
— Asalt is a random string that is concatenated with a password
before sending it through the one-way hash function.
+ Random salt value chosen by system.
— Example: plre
+ Password chosen by user.
— Example: baseball

04/30/2010 CSCI 315 Operating Systems Design

12

12

Salting the Password Table

« Password table contains:

— Salt value = plre
— h(password+salt) = h(baseballplre) = FSXMXFNB

Username Uid Salt Hash
Alice 12 DCFV IGHERVCL
Bob 7 PLRE FSXMXFNB
04/30/2010 CSCI 315 Operating Systems Design 13

13

Salting the Password Table

» User enters username and password.

» The operating system combines the password
and the salt and hashes the result.

* The operating system compares the result to the
entry in the table.

» Match = user is assigned the corresponding uid.
» Advantages:

— Password table does not have to be protected.

— Dictionary attacks are much harder (though not
impossible).

04/30/2010 CSCI 315 Operating Systems Design 14

14

A Dictionary Attack

* Attacker must now expand the dictionary to contain
every possible salt with each possible password:
— baseballaaaa
— baseballaaab
— baseballaaac

— baseballaaaz
— baseballaaba
— baseballaabb

» 264 (about half a million) times more work to check each
word in the dictionary (for 4-letter salts)

04/30/2010 CSCI 315 Operating Systems Design 15

15

Access Control Policies

» Once a user has logged in the system must
decide which actions he can and cannot
perform.

— Examples:
+ Bob may be allowed to read files that Alice cannot.
+ Alice may be permitted to use a printer that Bob cannot.

* In general, we view the system as a collection
of:

— Subjects (users)
— Objects (resources)

* An access control policy specifies how each
subject can use each object.

04/30/2010 CSCI 315 Operating Systems Design

16

16

The Access Control Matrix

» Suggested by Butler Lampson.

» Forms the basis of protection in many real
operating systems:
— Resources to be protected are called objects.
— Every object is within one or more protection domain.

— A domain specifies what operations are permitted on
the objects it contains.

— Authorization to perform an operation on an object in
a domain is called an access right.

04/30/2010 CSCI 315 Operating Systems Design 17

17

Protection Domains - Example

Assume:
— All students are in domain 1
— All faculty members are in domain 2
— All system administrators are in domain 3

o N

N

Domain 1

o 2N o)

Domain 2 Domain 3

04/30/2010 CSCI 315 Operating Systems Design

18

18

Protection Domains

» Students can execute O, and read and write O,
» Faculty can write O, and print O,
« Sys admins can execute O, read O, and print O,

I/ <0, {execute}> _\.
‘\H_-TOL {read, write}:-_’ /

Domain 1

e
/ \ <0, {&QCU&

<O, {write}> <Oy, {print}>)

N

Domain 2 Domain 3

04/30/2010 CSCI 315 Operating Systems Design 19

19

Protection Domains

« A user can only be in one protection domain at
any given time.
— Static: a user always operates in the same domain.
+ Simple
« Inflexible

— Dynamic: a user can switch from one domain to
another.

+ Complex
* More flexible
* The domain in which a user is operating
determines what actions are and are not
permitted.

04/30/2010 CSCI 315 Operating Systems Design

20

20

Lampson’s Access Control Matrix

Represent the protection domains and access

rights using a matrix:

— Rows represent the domains.

— Columns correspond to the objects.

— Matrix entries specify the access rights to an object in
the corresponding domain.

Object 1 Object 2 Object 3 Object 4
Domain 1 [read, write} [execute)
Domain 2 {write)} {print]
Domain3 | [execute} {read) {print}

04/30/2010

CSCI 315 Operating Systems Design

21

21

Access Control Policy

+ The matrix specifies an access control policy for the
system:

system.
- Examples:
= Astudent (domain 1) is allowed to read object 1.

= A faculty member (domain 2) is not allowed to read object 1.
« A faculty member (domain 2) is allowed to write to object 2 .

— Stipulates what actions a given user is allowed to perform on the

Object 1 Object 2 Object 3 Object 4
Domain 1 | {read, write} | [execute]
Domain 2 {write)} {print}
Domain3 | [execute} {read) {print}
04/30/2010

CSCI 315 Operating Systems Design

22

22

Physical Security

» Physical security entails restricting access to
some object by physical means.
— Examples: locked doors and human guards.

* Neglecting physical security can undermine
other security mechanisms that protect a
system.

— Example: a system with an superb file-protection

mechanism.

+ The disk drive that stores the filesystem is publicly
accessible.

+ An attacker could attach his own computer to the drive and
read its contents.

04/30/2010 CSCI 315 Operating Systems Design

23

23

Human Factors

* Human factors - the users of computer systems impact
security.
* Users can undermine system security through their
naivete, laziness, or dishonesty.
— Users of a system should also be educated about its security
rﬂechanisms so that they are unlikely to accidentally undermine
them.

= Explain to users why certain passwords are weak or help them
choose strong ones.

— Users of a system should be screened so that they are unlikely
to purposely abuse the system privileges they are given.
* People who have exhibited a pattern of dishonest behavior in the
past are risky users.

04/30/2010 CSCI 315 Operating Systems Design 24

24

Program Security

* Program security requires that the programs

that run on a computer system must be:
— Written correctly (coding faults).

— Installed and configured properly (operational faults).

— Used in the manner in which they were intended
(environmental faults).

— Properly behaved (malicious code).

* Flaws in any of these areas may be discovered
and exploited by attackers.

04/30/2010 CSCI 315 Operating Systems Design

25

25

Program Security (cont)

» Coding faults — program bugs that can be
exploited to compromise system security.

» Examples:

— Condition validation errors — a requirement is either
incorrectly specified or incompletely checked.

— Synchronization errors — operations are performed
in an improper order.

04/30/2010 CSCI 315 Operating Systems Design 26

26

Condition Validation Error - Example

* The vux (Unix-to-Unix command execution) utility.

* Used to execute a sequence of commands on a
specified (remote) system.

* For security reasons, the commands executed by wux
should be limited to a set of “safe” commands.

— The date command (displays the current date and time) is a safe
command and should be allowed.

— The rm command (removes files) is not a safe command and
should not be allowed.

04/30/2010 CSCI 315 Operating Systems Design 27

27

Condition Validation Error — Example (cont)

* Processing uux requests:

— For each command:
* Check the command to make sure it is in the set of “safe”
commands.
» Skip the command’s arguments until a delimiter is reached.
— Example:
* cmd1argtarg?2,; cmd2; emd3 arg1
— The problem: some implementations did not include the
ampersand (&) in the list of delimiters though it is a valid
delimiter.
— The result: unsafe commands (e.g. cmd4) could be executed if
they followed an ampersand:
* cmd2 & cmd4 arg1

04/30/2010 CSCI 315 Operating Systems Design 28

28

Synchronization Error - Example

» The mkdir utility — creates a new subdirectory
— Creates a new, empty subdirectory (owned by roof).
— Changes ownership of the subdirectory from root to the user
executing mkdir.
* The problem:

— If the system is busy, it may be possible to execute a few other
commands between the two steps of mkdir.
— Example:

+ Delete the new directory after step one and replace it with a link to
another file on the system.

* When step two executes it will give the user ownership of the file.

04/30/2010 CSCI 315 Operating Systems Design 29

29

Program Security

* Malicious code (malware) - programs specifically
designed to undermine the security of a system.
— Trojan horses
+ Login spoof
+ Root kits
— Trap doors
— Viruses
« Virus scanning
— Worms
* The Morris worm, Code Red, Code Red Il, Nimda, Slammer

04/30/2010 CSCI 315 Operating Systems Design 30

30

Trojan Horses

» History — a hollow wooden horse used by the
Greeks during the Trojan War.

 Today - a Trojan horse (trojan) is a program
that has two purposes: one obvious and benign,
the other hidden and malicious.

» Examples:
— Login spoof.
— Mailers, editors, file transfer utilities, etc.
— Compilers.
04/30/2010 CSCI 315 Operating Systems Design 31

31

Root Kits

Definition: A root kit is a collection of trojans to replace

widely used system utility programs in order to conceal
the activities of an intruder.

Example: You break into a system, you upload some files
and install services to create a backdoor. The system
administrator can find evidence of your intrusion by
listing the files on the computer, by listing the running
processes, and by looking at system logs. What do you
do to cover your tracks?

04/30/2010 CSCI 315 Operating Systems Design 32

32

Trap Doors

» Trap doors are flaws that designers place in
programs so that specific security checks are not
performed under certain circumstances.

+ Example: a programmer developing a
computer-controlled door to a bank’s vault.

— After the programmer is done the bank will reset all of
the access codes to the vault.

— However, the programmer may have left a special

access code in his program that always opens the
vault.

04/30/2010 CSCI 315 Operating Systems Design 33

33

Viruses

» Avirus is a fragment of code created to spread
copies of itself to other programs.

» Require a host (typically a program):
— In which to live.
— From which to spread to other hosts.

» A host that contains a virus is said to be
infected.

— A virus typically infects a program by attaching a copy
of itself to the program.

» Goal: spread and infect as many hosts as
possible.

04/30/2010 CSCI 315 Operating Systems Design 34

34

Viruses (cont)

* Virus may prepend its instructions to the program’s
instructions.

— Every time the program is run the virus’ code is executed:
* Infection propagation — mechanism to spread infection to other
hosts.
* Manipulation routine — (optional) mechanism to perform other
actions:
— Displaying a humorous message.
Subtly altering stored data.
Deleting files.
Killing other running programs.

Causing system crashes.
- Etc.

04/30/2010 CSCI 315 Operating Systems Design 35

35

Viruses (cont)

Virus Code Virus Code
Program Code
Program Code
An Uninfected Program AVirus The Infected Program

04/30/2010

CSCI 315 Operating Systems Design

36

Defending Against Computer Viruses

* Virus scanning programs check files for signatures of
known viruses.
— Signature = some unique fragment of code from the virus that
appears in every infected file.
* Problems:

— Polymorphic viruses that change their appearance each time
they infect a new file.
* No easily recognizable pattern common to all instances of the virus.
— New viruses (and modified old viruses) appear regularly.
» Database of viral signatures must be updated frequently.

04/30/2010 CSCI 315 Operating Systems Design 37

37

Worms

« Virus = a program fragment.

 Worm = a stand-alone program that can
replicate itself and spread.

* Worms can also contain manipulation routines to
perform other actions:
— Modifying or deleting files.
— Using system resources.
— Collecting information.
— Etc.

04/30/2010 CSCI 315 Operating Systems Design 38

38

The Morris Worm

» Appeared in November, 1988.

» Created by a Computer Science graduate
student.

* Brought down thousands of the ~60,000
computers then attached to the Internet.

— Academic, governmental, and corporate.
— Suns or VAXes running BSD UNIX.

04/30/2010 CSCI 315 Operating Systems Design 39

39

Operation of the Morris Worm

Used four different attack strategies to try to run

a piece of code called the grappling hook on a

target system.

* When run, the grappling hook:

— Made a network connection back to the infected
system from which it had originated.

— Transferred a copy of the worm code from the
infected system to the target system.

— Started the worm running on the newly infected
system.

04/30/2010 CSCI 315 Operating Systems Design

40

40

The Morris Worm’s Grappling Hook

s Attack
Grappling |~
Hook Request for'Worm | Worm
W
Worm < mie /|
Target System Infected System
04/30/2010 CSCI 315 Operating Systems Design

41

41

Attack Strategy #1
Target: sendmail

» Many versions of sendmail had a debug option.

— Allowed an e-mail message to specify a program as
its recipient.

* Named program ran with the body of the
message as input.

» The worm created an e-mail message:
— Contained the grappling hook code.
— Invoked a command to strip off the mail headers.
— Passed the result to a command interpreter.

04/30/2010 CSCI 315 Operating Systems Design

42

42

Attack Strategy #2
Target: the finger daemon

» The finger daemon, fingerd, is a remote user
information server.
— Which users currently logged onto the system.
— How long each has been logged on.
— The terminal from which they are logged on.
— Etc.

» A buffer overflow bug in fingerd on VAXes
allowed the worm to execute the grappling hook
code.

04/30/2010 CSCI 315 Operating Systems Design 43

43

Buffer Overflows

* A program’s stack segment.
— Temporary working space for the program.
— Example: Subroutines

int foo(int P1, int P2) /* subroutine “foo" */

{
int L1, L2; /* local variables L1 and L2 */

Ll = P1 + P2;
return(Ll) ; /* return value */

}

int main() /* main program */

{

x = foo(l,2); /* call to subroutine “foo” */

04/30/2010 CSCI 315 Operating Systems Design

44

04/30/2010

Stack Frames

foo
Stack
frames
main
stack

CSCI 315 Operating Systems Design

45

45

Stack Frames (cont)

* A stack frame contains the corresponding routine’s:

Parameters.

Return address (i.e. next instruction to execute upon
completion).

Saved registers.

Local variables.

* Many architectures have registers:
— SP, the stack pointer, points to the top of the stack.

— BP, the base pointer, points to a fixed location within the frame.
» Used to reference the procedure’s parameters and local variables.

04/30/2010 CSCI 315 Operating Systems Design

46

46

Stack Frames (cont)

» The main routine calls foo:
— foo’s parameters are first pushed onto the stack.

— The next instruction in main to execute after foo
finishes, the return address, is pushed.
— Control is transferred to foo.
— foo’s prologue:
+ Save caller's (main’s) base pointer.
+ Set callee’s (foo’s) bp equal to the current sp.

* Increment sp to reserve space on the stack for foo’s local
variables.

04/30/2010 CSCI 315 Operating Systems Design

47

a7

Stack Frames (cont)

+ foo's stack frame at the after the completion of the
prologue:

* SP
L2

L1

BP
main’s bp

return
address

P2

P1
stack

04/30/2010 CSCI 315 Operating Systems Design

48

48

Stack Frames (cont)

* The execution of foo:
- P1=BP-4
- P2=BP-3
- L1=8P
— [2=BP+1

* The statement “L1 = P1 + P2” would performed by the
following assembly language instruction:

— add BP-4, BP-3, BP // adds first two arguments and stores the
result in the third

04/30/2010 CSCI 315 Operating Systems Design 49

49

Stack Frames (cont)

* foo’s epilogue cleans up the stack and returns control to
the caller:
— Caller’s (main’s) bp is placed back into the bp register.

— The return address is placed into the ip (instruction pointer)
register.

— The stack pointer is decremented to remove the callee’s frame
from the stack.

. Stack
main —
frame
stack
04/30/2010 CSCI 315 Operating Systems Design 50

50

04/30/2010

A Buffer Overflow

int foo(char *s) /* subroutine “foo™ */

{

char buffer[10]; /* local variable*/
strcpy(buffer,s);

}

int main() /* main program */

{
char name[]="ABCDEFGHIJKL";

foo(name); /* call to subroutine “foo™ */

}

CSCI 315 Operating Systems Design

51

ol

04/30/2010

A Buffer Overflow (cont)

foo’s stack frame after prologue:

buffer[0]

buffer[1]

buffer[2]

buffer[3]

buffer[4]

buffer[5]

buffer[6]

bufler[7]

buffer[§]

bufler[9]

* SP

main’s bp

-]

return address

stack

* BP

CSCI 315 Operating Systems Design 52

52

04/30/2010

A Buffer Overflow (cont)

Stack after execution of foo (but before the epilogue):

b SpP
A
B
C
D
E
F
G
H
|
! * BP
K
L
5
stack
CSCI 315 Operating Systems Design 53

53

A Buffer Overflow (cont)

The string overflowed foo’s buffer:

— Overwrote main’s bp.

— Overwrote the return address with ‘L’ = 89 (ASCII).

When foo finishes control will be transferred to the
instruction at address 89.

— Error.

The Morris worm sent a specially crafted 243-byte string
to the finger daemon:

— Overflowed a buffer and overwrote the return address.

— The fingerd executed the /bin/sh program which executed the
grappling hook code.

04/30/2010 CSCI 315 Operating Systems Design 54

Attack Strategy #3
Target: rsh

* rsh = “remote shell”

— Allows users to execute commands on a remote host
from a machine that the remote host trusts.
* /etc/hosts.equiv
 .rhosts
» The worm used rsh to run the grappling hook
code on remote computers that trusted an
infected machine.

04/30/2010 CSCI 315 Operating Systems Design 55

55

Attack Strategy #4
Target: rexec

* rexec = “remote execution”

— Protocol that enables users to execute commands remotely
* Must specify:
— Ahost
— Avalid username and password for that host

+ The worm attempted to crack passwords on each
computer that it infected so that it could use rexec to
infect other hosts

— No password

— The username

— The username appended to itself

— The user’s last name or nickname

— The user’s last name reversed

— Dictionary attack using 432-word dictionary carried with the worm
— Dictionary attack using ~25,000 words in /etc/dict/words

04/30/2010 CSCI 315 Operating Systems Design 56

56

Perform

Operation of the Worm

ed many actions to try to camouflage its activity:

— Changed its process name to sh.

— Erased its argument list after processing it.

— Deleted its executable from the filesystem once it was running.

— Various steps to make sure that a core file would not be generated.
— Spent most time sleeping.

— Forked every three minutes, parent process exited and the child
continued.

* Changed the worm'’s process identification number (pid) often.
* Prevent the worm from accumulating too much CPU time.

— All constant strings inside the worm were XORed character-by-
character with the value 81,4

— Used a simple challenge and response mechanism to determine
whether or not a machine it had just infected was already running a
copy of the worm.

04/30/2010

CSCI 315 Operating Systems Design

57

S7

Aftermath

* The worm spread quickly and infected a large.
percentage of the computers connected to the Internet.

* Noticed within hours.
* Took days for researchers to discover how the worm
worked and how to stop it.

* In 1990, Morris was convicted by a federal court of
violating the Computer Crime and Abuse Act of 1986:
— Three years of probation.
— Four hundred hours of community service.
— $10,050 fine.

04/30/2010 CSCI 315 Operating Systems Design 58

58

