Operating System Design

/O devices
Polling vs. Interrupt
DMA

Neda Nasiriani { | J
Fall 2018

Macroscopic Abstract View of the
Computer System

Application Programs

Operating System

What Is an Operating System?

A "program" that acts as an intermediary between
a user of a computer and the computer
hardware.

® The OS manages resources in the computer system.
® The OS controls the execution of programs.

Operating System Definitions

» Resource allocator — manages and allocates
resources.

» Control program — controls the execution of
user programs and operations of 1/O devices.

* Kernel — the one program “running” at all times
(all else being application programs).

Small Quiz!

/O Devices

Computer System

Disks Mouse
; A ~N Keyboard
@Ej Ej Printer
Disk I/O Controller
CPU Controller
Memory Grabhics Network
Adapter Interface

Display

What kind of 1/O devices?

Three main categories:
1) Storage devices
Disk, tapes
2) Transmission devices
Network connections, Bluetooth
3) Human-interface devices
Screen, keyboard, mouse, audio in and out

* How does these devices communicate with computer system?

A kernel 1/O structure

software

hardware

kernel

kernel I/O subsystem

SCSI keyboard | mouse PCI bus floppy ATAPI
device device device oo device device device
driver driver driver driver driver driver
SCSI keyboard | mouse PCI bus floppy ATAPI
device device device oo device device device
controller | controller | controller controller | controller | controller
4 " & A " 0 o
v A 4 A 4 A 4 A 4 ¥ A 4
ATAPI
SCSI floppy- deyices
devices keyboard| | mouse e PCI bus disk (disks,
drives tapes,
drives)

/O Devices

- Communication with computer system

Port: connection point for device
Bus: Shared wire among different devices

Memory-mapped I/O: device-control registers are
mapped to the address space of the CPU. The CPU
executes /O requests using the standard data transfer
Instructions at their memory address

Controller (host adapter) — electronics that operate
port, bus, device

Contains processor, microcode, private memory
(buffer), bus controller, etc [10)

Operating System Operations

Assumptions:

® 1/0 devices and the CPU can execute concurrently.

® Each device controller is in charge of a particular
device type.

® Each device controller has a local buffer.

® There must be some mechanism to move data
from/to main memory to/from local buffers.

® 1/0 operations move data from the device to a
controller’s local buffer.

® There must be some mechanism for the CPU to
learn that an I/O operation has completed.

Option 1: Polling

initiate 1/0

ask device If data iIs ready delabred end I/O

data is not ready

wait some time

The SImpsons: https://www.youtube.com/watch?v=18Azod TPG5U

Option 1: Polling

-

> Almost 3 CPU cycles to poll a device
> Inefficient in case of repeated attempts

U

initiate 1/0

ask device if data is ready rabready end I/O

data is not ready /

> If this time is short (the device
. ' is very fast) this could work?!?
walit some time > What if some unexpected 1/0
operation happens and no
polling was initiated for it?!?

\§

https://www.youtube.com/watch?v=18 AzodTPG5U

Option 1: Polling

> Almost 3 CPU cycles to poll a device
~—==—f repeated attemps

wait some time

» If this time is short (the device
Is very fast) this could work?!?

https://www.youtube.com/watch?v=18AzodTPG5U

FYR: Polling

W For each byte of 1/0

Check if the 1/0O device is ready (Read busy bit from status
register until 0)

Host sets read or write bit and if write, copies data into data-out
register

Host sets command-ready bit
Controller sets busy bit, executes transfer

Controller clears busy bit, error bit, command-ready bit when
transfer done

Option 2: Interrupt

Initiate 1/O

go do something

data is ready productive

Interrupt

Initiate 1/0

go do something

data is ready prod uctive

receive data

Option 2: Interrupt

Initiate 1/O

1 t -]
0o do semetning
data is ready M@@ﬂ«w@@v@

T~

1/0 terminated go baCk (0 Something
productive

receive data

Interrupts

CPU Interrupt-request line triggered by 1/0O device
Checked by processor after each instruction

Interrupt handler receives interrupts
Maskable to ignore or delay some interrupts

Interrupt vector to dispatch interrupt to correct handler
Context switch at start and end
Based on priority
Some nonmaskable

Interrupt chaining if more than one device at same interrupt
number

Remember: Traps are software interrupts

Interrupt Driven /O Cycle

CPU 1/O controller

— device driver initiates I/O \
initiates 1/O

CPU executing checks for
interrupts between instructions
[]

* kA

CPU receiving interrupt, 4 input ready, output
transfers control to complete, or error
interrupt handler generates interrupt signal

7
| 5
interrupt handler

processes data,
returns from interrupt

A

6

CPU resumes
processing of
interrupted task

Interrupt Driven 1/O Cycle

CPU 1/O controller

— device driver initiates I/O \
initiates 1/O

CPU executing checks for
interrupts between instructions
[]

3
I
[}
¥ L 4
CPU receiving interrupt, 4 input ready, output
transfers control to - complete, or error
interrupt handler generates interrupt signal

5

k4

interrupt handler

s " What if a huge chunk of data)
to be read from Disk?

Wasting CPU resources

CPU resumes Can we offload some of this

processing of

interrupted task \ from CPU? /

6

Direct Memory Access (DMA)

« What if we have a simpler controller that knows
the data location to be read from the disk

the memory location that it should be copied too
And can take care of this...

DMA/bus/ ‘ X

interrupt + CPU memory bus —| memory | buffer
controller
g PCl bus)
IDE disk
controller

Direct Memory Access (DMA)

» Bypasses CPU to transfer data directly between
1/O device and memory

» OS writes DMA command block into memory

Source and destination addresses
Read or write mode
Count of bytes

» The CPU writes location of command block to DMA controller

- Handshaking between DMA controller and Device controller

DMA-request and DMA-acknowledge (for each word of data
transfer)

Bus mastering of DMA controller — grabs bus from CPU
Cycle stealing from CPU but still much more efficient

* When done, DMA controller interrupts to signal completion

(2]

DMA: How 1t works

1. device driver is told
to transfer disk data CPU
to buffer at address X

5. DMA controller 2. device driver tells
transfers bytes to disk controller to
buffer X, increasing transfer C bytes
memory address from disk to buffer cache
and decreasing C at address X
untilC =0 OMA/buS/

6. when C = 0, DMA : u = X
interrupts CPU to signal égtrﬁ:rolfgr 1= CPU mefmnory bus i buiter
transfer completion

g PCI bus

3. disk controller initiates
IDE disk DMA transfer
controller 4. disk controller sends

each byte to DMA

@ @ controller
sl il

Activity!

Next Session

 Booting the OS

