
Operating System Design

Neda Nasiriani

Fall 2018
1

I/O devices

Polling vs. Interrupt

DMA

Macroscopic Abstract View of the

Computer System

Hardware

Operating System

Application Programs

2

A "program" that acts as an intermediary between

a user of a computer and the computer

hardware.

What is an Operating System?

• The OS manages resources in the computer system.

• The OS controls the execution of programs.

3

Operating System Definitions

• Resource allocator – manages and allocates
resources.

• Control program – controls the execution of
user programs and operations of I/O devices.

• Kernel – the one program “running” at all times
(all else being application programs).

4

Small Quiz!

5

I/O Devices

6

Computer System

7

What kind of I/O devices?

Three main categories:

1) Storage devices

• Disk, tapes

2) Transmission devices

• Network connections, Bluetooth

3) Human-interface devices

• Screen, keyboard, mouse, audio in and out

• How does these devices communicate with computer system?

8

A kernel I/O structure

9

I/O Devices

• Communication with computer system
• Port: connection point for device

• Bus: Shared wire among different devices

• Memory-mapped I/O: device-control registers are

mapped to the address space of the CPU. The CPU

executes I/O requests using the standard data transfer

instructions at their memory address

• Controller (host adapter) – electronics that operate

port, bus, device

• Contains processor, microcode, private memory

(buffer), bus controller, etc

10

Operating System Operations

• I/O devices and the CPU can execute concurrently.

• Each device controller is in charge of a particular

device type.

• Each device controller has a local buffer.

• There must be some mechanism to move data

from/to main memory to/from local buffers.

• I/O operations move data from the device to a

controller’s local buffer.

• There must be some mechanism for the CPU to

learn that an I/O operation has completed.

Assumptions:

11

Option 1: Polling

https://www.youtube.com/watch?v=18AzodTPG5U The Simpsons:

ask device if data is ready end I/O

wait some time

initiate I/O

data is ready

data is not ready

12

Option 1: Polling

https://www.youtube.com/watch?v=18AzodTPG5U The Simpsons:

ask device if data is ready end I/O

wait some time

initiate I/O

data is ready

data is not ready

 If this time is short (the device

is very fast) this could work?!?

 What if some unexpected I/O

operation happens and no

polling was initiated for it?!?

 Almost 3 CPU cycles to poll a device

 Inefficient in case of repeated attempts

13

Option 1: Polling

https://www.youtube.com/watch?v=18AzodTPG5U The Simpsons:

ask device if data is ready end I/O

wait some time

initiate I/O

data is ready

data is not ready

 If this time is short (the device

is very fast) this could work?!?

 Almost 3 CPU cycles to poll a device

 Inefficient in case of repeated attemps

What if the I/O device

could notify the CPU

when it is done!?!

14

FYR: Polling

 For each byte of I/O

1. Check if the I/O device is ready (Read busy bit from status

register until 0)

2. Host sets read or write bit and if write, copies data into data-out

register

3. Host sets command-ready bit

4. Controller sets busy bit, executes transfer

5. Controller clears busy bit, error bit, command-ready bit when

transfer done

15

Option 2: Interrupt

initiate I/O

go do something

productive data is ready

16

Interrupt

initiate I/O

go do something

productive data is ready

receive data

17

Option 2: Interrupt

initiate I/O

go do something

productive data is ready

receive data

go back to something

productive
I/O terminated

18

Interrupts

• CPU Interrupt-request line triggered by I/O device

• Checked by processor after each instruction

• Interrupt handler receives interrupts

• Maskable to ignore or delay some interrupts

• Interrupt vector to dispatch interrupt to correct handler

• Context switch at start and end

• Based on priority

• Some nonmaskable

• Interrupt chaining if more than one device at same interrupt

number

• Remember: Traps are software interrupts
19

Interrupt Driven I/O Cycle

20

Interrupt Driven I/O Cycle

What if a huge chunk of data

to be read from Disk?

Wasting CPU resources

Can we offload some of this

from CPU?

21

Direct Memory Access (DMA)

• What if we have a simpler controller that knows

• the data location to be read from the disk

• the memory location that it should be copied too

• And can take care of this…

22

Direct Memory Access (DMA)

• Bypasses CPU to transfer data directly between
I/O device and memory

• OS writes DMA command block into memory
• Source and destination addresses

• Read or write mode

• Count of bytes

• The CPU writes location of command block to DMA controller

• Handshaking between DMA controller and Device controller

• DMA-request and DMA-acknowledge (for each word of data
transfer)

• Bus mastering of DMA controller – grabs bus from CPU

• Cycle stealing from CPU but still much more efficient

• When done, DMA controller interrupts to signal completion
23

DMA: How it works

24

Activity!

25

Next Session

• Booting the OS

26

