QM'uwcj and Pyfer mance :

Persishence Shornge (HDD and SSDs wnd...) ot Slowee Gportd
B RAM, CPU Grele §a CPU Mejishers.

? ' ., HED
cas / \ o) \5 ot
ﬁ?ﬁm \ % F:;@SSD bl oo by rend. ot
N i e
¥Rosis o0 Tk Gonpry wd budlt on Hus
Grapt of c»d»;j ok (shoed i dobborze) 1y mamony = oy bosier
Rekitinl fsme. How muck Faster WAY (asher.

CRiciency] - disk-allostan G diredevy dpostors
_c9. Unix: praa”OCak’ rnoY0s -
O¥rer aﬁ)mc'a: Keep inolo Qa dabe block. cleve e eacl ofer .

> d,al(engejj ?)
— keap (F molsiticd dake s imlo (_for backnp prapBd
- POM”OM CU’J‘U,J."‘{#X) : 20 ‘0'}5 rocut, =3 _Lf_C_);@ f@*eﬁoﬂlo

U bids =% %ml’n»v/ze—spm I
)O&’W-

CSCI 315 Fa18 87 /92 11/29/18

Peclormanc Unix FFS

_Keyp wikobdlor Clpse 17 dole blocle) (f&cgdk:wédb%j;u

— Buftr Gadie ; o sechian of romy B acade T pap
block) ek et e/ﬁqm[-@ used -

— [25e Cndhe + virkeal momory bechnimney To Cocle Cile \alaoas
Pagey rodher fhom g blads —segie, 7. waed by 5, M.

— wrke (cdency s ynchrorow v hes = bolock Ha cawg pecss,
Now r'Myf'Ag M/}/Q W’).,CS Wen SIM/‘Q’\@M@»

A
B

He ofherowa 100 1z Joo buflesd.
[[L UL wnley.

Bt Per /'/7707/9.4,/' wmies (DoJobase A/e""'oé) - Syndmno;g
3 Wz}-&t a<7 % w:—%@l@(@mf [%(j@l
sty LRO (> used. Howeres (or Sepuanlin) oxresslooe

ATCD
Repdl -ohed : Sewonl Subseqend frger Cooded.

CSCI 315 Fa18 88 /92 11/29/18

,Qecowa -

(/0!”/\ M‘U — r.ACo/\$;SIlQA@ (W ane. d-QAIM? WI#\
e e aoleblocks Dbl ocles Pe’fkn} &a«yz)

i E
We voabTo sk B oo arather daks black ¢
1Yywrke B Whak ore Crasl Serarmys®
2.) upebile \-4ep
Y e inelo ok,
loa 1 recsuer’

_ Rlesydtm Sronld ddech e prollem G by vo G iF.
{ — dhodk il melpdoter - CHMQCQASW;@’_)

~ Bk v UnX 3 s fon inM:aFy'
T Nombonsw Lepeds or Hype Uist Ao dn

| MWW.
3 Loy Shudwed ¥ (Journaduy)
au'd‘wﬂﬁﬂ"w‘e’"g’t withe t o Lg
oy TRl [T1 [[]

CSCI 315 Fa18 89 /92 11/29/18

f}wrmlr;j [wike - abhead - l—qo"ua)

_ instead o dxra}‘/a ovﬂij/'\j W"fo #re disk (ubu'd« 9
wsvally Horngh bubers " bistl) we list e

e chonge o the b] 6.7.0-«1~bwck_ Chaosy¢
imdp [1) 2 L s oo) ond Hen shof changing #e disk blacks.

=it a Cosh lwfpens, W G Chedde e @gﬂ do Yae_
necessoy md)i«s}nwafs.(npl(? Y (.J)

pages.cs.wisc.edu

CRASH CONSISTENCY: FSCK AND JOURNALING

Data Journaling

Let’s look at a simple example to understand how data journaling works.
Data journaling is available as a mode with the Linux ext3 file system,
from which much of this discussion is based.

Say we have our canonical update again, where we wish to write the
inode (I[v2]), bitmap (B[v2]), and data block (Db) to disk again. Before
writing them to their final disk locations, we are now first going to write
them to the log (a.k.a. journal). This is what this will look like in the log:

. ¥ N
§Tx8 Ive) B{v2] Db TEI

You can see we have written five blocks here. The transaction begin
(TxB) tells us about this update, including information about the pend-
ing update to the file system (e.g., the final addresses of the blocks I[v2],
B[v2], and Db), and some kind of transaction identifier (TID). The mid-
dle three blocks just contain the exact contents of the blocks themselves;
this is known as physical logging as we are putting the exact physical
contents of the update in the journal (an alternate idea, logical logging,

meshon a e nmn anmesmand lasdaal vrmannnmbatineg afl o ciin datn fw tha fnciuenal

Bub o [t oF redundaney 'bj w?wlf"y e dataolack - dsk
9 Limas 11U =P Mefadoden Jour ralrg .

CSCI 315 Fa18 90 /92 11/30/18

6:42 AM Fri Nov 30

pages.cs.wisc.edu
YOU HBUIE OUL d Wdy 10 IEE CONSISIENCY witout WIiig ddtd twice:

Metadata Journaling

Although recovery is now fast (scanning the journal and replaying a few
transactions as opposed to scanning the entire disk), normal operation
of the file system is slower than we might desire. In particular, for each
write to disk, we are now also writing to the journal first, thus doubling
write traffic; this doubling is especially painful during sequential write
workloads, which now will proceed at half the peak write bandwidth of
the drive. Further, between writes to the journal and writes to the main
file system, there is a costly seek, which adds noticeable overhead for
some workloads.

Because of the high cost of writing every data block to disk twice, peo-
ple have tried a few different things in order to speed up performance.
For example, the mode of journaling we described above is often called
data journaling (as in Linux ext3), as it journals all user data (in addition
to the metadata of the file system). A simpler (and more common) form
of journaling is sometimes called ordered journaling (or just metadata

© 2008-18, ARPACI-DUSSEAU

= L 9 100% ..

THREE
EAsy
PIECES

14

CRASH CONSISTENCY: FSCK AND JOURNALING

CSCI 315 Fa18

journaling), and it is nearly the same, except that user data is nof writ-
ten to the joumnal. Thus, when performing the same update as above, the

following information would be written to the journal:

Emllﬂl BM’I‘A—’

The data block Db, previously written to the log, would instead be
written to the file system proper, avoiding the extra write; given that most
1/0 traffic to the disk is data, not writing data twice substantially reduces
the 1/0 load of journaling. The modi%ication does raise an interesting

question, though: when should we write data blocks to disk?

Let’s again consider our example append of a file to understand the
problem better. The update consists of three blocks: I[v2], B[v2], and
Db. The first two are both metadata and will be logged and then check-
pointed; the latter will only be written once to the file system. When

should we write Db to disk? Does it matter?

As it turns out, the ordering of the data write does matter for metadata-
only journaling. For example, what if we write Db to disk after the trans-
action (containing I[v2] and B[v2]) completes? Unfortunately, this ap-

91/92

11/30/18

" Let's again consider our example append of a file to understand the
problem better. The update consists of three blocks: I[v2], B[v2], and
Db. The first two are both metadata and will be logged and then check-
pointed; the latter will only be written once to the file system. When
should we write Db to disk? Does it matter?

As it turns out, the ordering of the data write does matter for metadata-
only journaling. For example, what if we write Db to disk after the trans-
action (containing I[v2] and B[v2]) completes? Unfortunately, this ap-
proach has a problem: the file system is consistent but I[v2] may end up
pointing to garbage data. Specifically, consider the case where I[v2] and
B[v2] are written but Db did not make it to disk. The file system will then
try to recover. Because Db is not in the log, the file system will replay
writes to I[v2] and B[v2], and produce a consistent file system (from the
perspective of file-system metadata). However, I[v2] will be pointing to
garbage data, i.e., at whatever was in the slot where Db was headed.

To ensure this situation does not arise, some file systems (e.g., Linux
ext3) write data blocks (of regular files) to the disk first, before related
metadata is written to disk. Specifically, the protocol is as follows:

1. Data write: Write data to final location; wait for completion
(the wait is optional; see below for details).

2. Journal metadata write: Write the begin block and metadata to the
log; wait for writes to complete.

3. Journal commit: Write the transaction commit block (containing
TxE) to the log; wait for the write to complete; the transaction (in-
cluding data) is now committed.

4. Checkpoint metadata: Write the contents of the metadata update
to their final locations within the file system.

5. Free: Later, mark the transaction free in journal superblock.

By forcing the data write first, a file system can guarantee that a pointer
will never point to garbage. Indeed, this rule of “write the pointed-to
object before the object that points to it” is at the core of crash consis-
tency, and is exploited even further by other crash consistency schemes
[GP94] (see below for details).

\TING
MS
ON 1.00) WWW.OSTEP.ORG

NSISTENCY: FSCK AND JOURNALING

Joumal File System
TxB Contents TxE Metadata Data
(metadata)
issue issue issue
complete
complete

o . issue
" /M complete
M&"&uﬂ Figure 42.2: Metadata Journaling Timeline

action begin and the contents of the journal; howe
nd complete before the transaction end has been iss
note that the time of completion marked for each v
‘arbitrary. In a real system, completion time is dete

CSCI 315 Fa18 92 /92 11/30/18

