
Synchronization
CSCI 315 Operating Systems Design

Department of Computer Science

Notice: The slides for this lecture have been largely based on those from an earlier
edition of the course text Operating Systems Concepts, 8th ed., by Silberschatz, Galvin,
and Gagne. Many, if not all, the illustrations contained in this presentation come from
this source.

CSCI 315 Operating Systems Design 2

Race Condition

A race occurs when the correctness of a program depends on
one thread reaching point x in its control flow before another
thread reaches point y.

Races usually occurs because programmers assume that threads
will take some particular trajectory through the execution
space, forgetting the golden rule that threaded programs
must work correctly for any feasible trajectory.

Computer Systems
A Programmer’s Perspective

Randal Bryant and David O’Hallaron

CSCI 315 Operating Systems Design 3

The Synchronization Problem

• Concurrent access to shared data may
result in data inconsistency.

• Maintaining data consistency requires
mechanisms to ensure the “orderly”
execution of cooperating processes.

CSCI 315 Operating Systems Design 7

The Critical-Section Problem
Solution

1. Mutual Exclusion - If process Pi is executing in its critical section,
then no other processes can be executing in their critical sections.

2. Progress - If no process is executing in its critical section and there
exist some processes that wish to enter their critical section, then the
selection of the processes that will enter the critical section next
cannot be postponed indefinitely.

3.	
 Bounded Waiting - A bound must exist on the number of times
that other processes are allowed to enter their critical sections after
a process has made a request to enter its critical section and before
that request is granted. (Assume that each process executes at a
nonzero speed. No assumption concerning relative speed of the N
processes.)

Typical Process Pi

do {
! entry section
! ! critical section
! exit section
! ! remainder section
} while (TRUE);

CSCI 315 Operating Systems Design 8

Peterson’s Solution

int turn;

boolean flag[2];

CSCI 315 Operating Systems Design 9

do {
! flag[i] = TRUE;
! turn = j;
! while (flag[j] && turn == j);
! ! critical section
! flag[i] = FALSE;
! ! remainder section
} while (TRUE);

Using Locks

CSCI 315 Operating Systems Design 10

do {
! acquire lock
! ! critical section
! release lock
! ! remainder section
} while (TRUE);

CSCI 315 Operating Systems Design 11

Synchronization Hardware

• Many systems provide hardware support for critical section
code.

• Uniprocessors (could disable interrupts):
– Currently running code would execute without preemption.
– Generally too inefficient on multiprocessor systems.
– Operating systems using this not broadly scalable.

• Modern machines provide special atomic hardware
instructions:
– Test memory word and set value.
– Swap the contents of two memory words.

TestAndSet

CSCI 315 Operating Systems Design 12

boolean TestAndSet(boolean *target)

{!
 boolean ret_val = *target;!
! ! *target = TRUE;

! ! return ret_val;
}

Lock with TestAndSet

CSCI 315 Operating Systems Design 13

boolean lock = FALSE;

do {
! while (TestAndSet(&lock));
! ! critical section
! lock = FALSE;
! ! remainder section
} while (TRUE);

CompareAndSwap

CSCI 315 Operating Systems Design 14

int CompareAndSwap (int *value,
int expected, int new_value){

 int temp = *value;
 if (*value == expected)
 *value = new_value;

return temp;
}

Lock with CompareAndSwap

CSCI 315 Operating Systems Design 15

boolean lock = 0;

do {
! while(CompareAndSwap(&lock,0,1) != 0);
! ! critical section
! lock = 0;
! ! remainder section
} while (TRUE);

How are we meeting
requirements?

Do the solutions above provide:

• Mutual exclusion?
• Progress?
• Bounded waiting?

CSCI 315 Operating Systems Design 16

CSCI 315 Operating Systems Design 17

Semaphores
• Counting semaphore – integer value can range over an unrestricted

domain.

• Binary semaphore – integer value can range only between 0
and 1; can be simpler to implement (also known as mutex locks).

• Note that one can implement a counting semaphore S as a binary
semaphore.

• Provides mutual exclusion:

 semaphore S(1); // initialized to 1

 wait(S); // or acquire(S) or P(S)
 criticalSection();
 signal(S); // or release(S) or V(P)

CSCI 315 Operating Systems Design 18

Semaphore Implementation

typedef struct {
!int value;
!struct process
*list;

} semaphore;

CSCI 315 Operating Systems Design 19

Semaphore Implementation
wait(semaphore *S) {
! S->value--;
! if (S->value < 0) {
! ! ! add process to S->list
! ! ! block();
! }
}

signal(semaphore *S) {
! S->value++;
! if (S->value <= 0) {
! ! ! remove a process P
 from S->list
! ! ! wakeup(P);
! }

CSCI 315 Operating Systems Design 20

Semaphore Implementation

• Must guarantee that no two processes can execute
signal() and wait() on the same semaphore at the same
time.

• The implementation becomes the critical section problem:
– Could now have busy waiting in critical section implementation

• But implementation code is short
• Little busy waiting if critical section rarely occupied

– Applications may spend lots of time in critical section

CSCI 315 Operating Systems Design 20

The Bounded-Buffer Problem

int n;

mutex access;

semaphore empty;

semaphore full;

init(&access,1);

init(&empty,n);

init(&full,0);

producer consumer

shared buffer
capacity n items

access

CSCI 315 Operating Systems Design 20

The Bounded-Buffer Problem

producer consumer

Producer

do {// produce item and save

wait(&empty);
wait(&access);
// add item and save
signal(&access);
signal(&full);

} while (true);

do {// produce item and save

wait(&empty);
wait(&access);
// add item and save
signal(&access);
signal(&full);

} while (true);

CSCI 315 Operating Systems Design 20

The Bounded-Buffer Problem

producer consumer

critical section

CSCI 315 Operating Systems Design 20

The Bounded-Buffer Problem

producer consumer

Consumer

do { wait(&full);

wait(&access);
// remove item and save

signal(&access);
signal(&empty);

// consume save item

} while (true);

CSCI 315 Operating Systems Design 20

The Bounded-Buffer Problem

do { wait(&full);

wait(&access);
// remove item and save

signal(&access);
signal(&empty);

// consume save item

} while (true);

producer consumer

critical section

CSCI 315 Operating Systems Design 21

Monitor
• Semaphores are low-level synchronization resources.

• A programmer’s honest mistake can compromise the entire system (well, that is
almost always true). We should want a solution that reduces risk.

• The solution can take the shape of high-level language constructs, as the monitor
type:

A procedure can access only local
variables defined within the monitor.

There cannot be concurrent access to
procedures within the monitor (only one
process/thread can be active in the
monitor at any given time).

Condition variables: queues are
associated with variables. Primitives for
synchronization are wait and signal.

monitor mName {
 // shared variables
declaration
 procedure P1 (…) {
 …
 }
 procedure Pn (…) {
 …
 }
 init code (…) {
 ….
 }
}

CSCI 315 Operating Systems Design 22

Monitor

CSCI 315 Operating Systems Design 23

Deadlock and Starvation
• Deadlock – two or more processes are waiting indefinitely for an event

that can be caused by only one of the waiting processes.

• Let S and Q be two semaphores initialized to 1
	
 	
 P0	
 	
P1
	
 	
 acquire(S); 	
 	
acquire(Q);
	
 	
 acquire(Q); 	
 	
acquire(S);
	
 	
 . 	
 	
.
	
 	
 . 	
 	
.
	
 	
 . 	
 	
.
	
 	
 release(S); 	
 	
release(Q);
	
 	
 release(Q); 	
 	
release(S);

• Starvation – indefinite blocking. A process may never be removed
from the semaphore queue in which it is suspended.

CSCI 315 Operating Systems Design 24

The Dining-Philosophers Problem

CSCI 315 Operating Systems Design 25

The Dining-Philosophers Problem

thinking

hungry eating

State diagram for a philosopher

CSCI 315 Operating Systems Design 26

The Dining-Philosophers Problem

CSCI 315 Operating Systems Design 27

The Dining-Philosophers Problem

CSCI 315 Operating Systems Design 28

The Dining-Philosophers Problem

CSCI 315 Operating Systems Design 29

The Dining-Philosophers Problem

CSCI 315 Operating Systems Design 30

The Dining-Philosophers Problem

CSCI 315 Operating Systems Design 31

The Dining-Philosophers Problem

Limit to Concurrency

What is the maximum number of
philosophers that can be eating at any
point in time?

CSCI 315 Operating Systems Design 32

Philosopher’s Behavior

• Grab chopstick on left
• Grab chopstick on right
• Eat
• Put down chopstick on right
• Put down chopstick on left

CSCI 315 Operating Systems Design 33

How well does this work?

CSCI 315 Operating Systems Design 34

The Dining-Philosophers Problem

CSCI 315 Operating Systems Design 35

The Dining-Philosophers Problem

Question: How many philosophers can eat at once? How
can we generalize this answer for n philosophers and n
chopsticks?

Question: What happens if the programmer initializes the
semaphores incorrectly? (Say, two semaphores start out a
zero instead of one.)

Question: How can we formulate a solution to the
problem so that there is no deadlock or starvation?

