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Notice: The slides for this lecture have been largely based on those from an earlier 
edition of the course text Operating Systems Concepts, 8th ed., by Silberschatz, Galvin, 
and Gagne.  Many, if not all, the illustrations contained in this presentation come from 
this source.
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Race Condition

A race occurs when the correctness of a program depends on 
one thread reaching point x in its control flow before another 
thread reaches point y. 

Races usually occurs because programmers assume that threads 
will take some particular trajectory through the execution 
space, forgetting the golden rule that threaded programs 
must work correctly for any feasible trajectory.

Computer Systems
A Programmer’s Perspective

Randal Bryant and David O’Hallaron
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The Synchronization Problem

• Concurrent access to shared data may 
result in data inconsistency.

• Maintaining data consistency requires 
mechanisms to ensure the “orderly” 
execution of cooperating processes.
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The Critical-Section Problem
Solution

1. Mutual Exclusion - If process Pi is executing in its critical section, 
then no other processes can be executing in their critical sections.

2. Progress - If no process is executing in its critical section and there 
exist some processes that wish to enter their critical section, then the 
selection of the processes that will enter the critical section next 
cannot be postponed indefinitely.

3.	
 Bounded Waiting -  A bound must exist on the number of times 
that other processes are allowed to enter their critical sections after 
a process has made a request to enter its critical section and before 
that request is granted. (Assume that each process executes at a 
nonzero speed. No assumption concerning relative speed of the N 
processes.)



Typical Process Pi

do {
! entry section
! ! critical section
! exit section
! ! remainder section
} while (TRUE);
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Peterson’s Solution

int turn;

boolean flag[2];
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do {
! flag[i] = TRUE;
! turn = j;
! while (flag[j] && turn == j);
! ! critical section
! flag[i] = FALSE;
! ! remainder section
} while (TRUE);



Using Locks
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do {
! acquire lock
! ! critical section
! release lock
! ! remainder section
} while (TRUE);
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Synchronization Hardware

• Many systems provide hardware support for critical section 
code.

• Uniprocessors (could disable interrupts):
– Currently running code would execute without preemption.
– Generally too inefficient on multiprocessor systems.
– Operating systems using this not broadly scalable.

• Modern machines provide special atomic hardware 
instructions:
– Test memory word and set value.
– Swap the contents of two memory words.



TestAndSet
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boolean TestAndSet(boolean *target)

{!
    boolean ret_val = *target;!
! ! *target = TRUE;

! ! return ret_val;
}



Lock with TestAndSet
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boolean lock = FALSE;

do {
! while (TestAndSet(&lock));
! ! critical section
! lock = FALSE;
! ! remainder section
} while (TRUE);



CompareAndSwap
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int CompareAndSwap (int *value,
int expected, int new_value){

  int temp = *value;
  if (*value == expected)
  *value = new_value;

return temp;
}



Lock with CompareAndSwap
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boolean lock = 0;

do {
! while(CompareAndSwap(&lock,0,1) != 0);
! ! critical section
! lock = 0;
! ! remainder section
} while (TRUE);



How are we meeting 
requirements?

Do the solutions above provide:

• Mutual exclusion?
• Progress?
• Bounded waiting?
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Semaphores
• Counting semaphore – integer value can range over an unrestricted 

domain.

• Binary semaphore – integer value can range only between 0 
and 1; can be simpler to implement (also known as mutex locks).

• Note that one can implement a counting semaphore S as a binary 
semaphore.

• Provides mutual exclusion:

                            semaphore S(1); // initialized to 1

                            wait(S); // or acquire(S) or P(S)
                            criticalSection();
                            signal(S); // or release(S) or V(P)
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Semaphore Implementation

typedef struct {
!int value;
!struct process 
*list;

} semaphore;
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Semaphore Implementation
wait(semaphore *S) { 
! S->value--;
! if (S->value < 0) { 
! ! ! add process to S->list
! ! ! block();
! }
}

signal(semaphore *S) { 
! S->value++;
! if (S->value <= 0) { 
! ! ! remove a process P
                from S->list
! ! ! wakeup(P);
! }
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Semaphore Implementation

• Must guarantee that no two processes can execute 
signal() and wait() on the same semaphore at the same 
time.

• The implementation becomes the critical section problem:
– Could now have busy waiting in critical section implementation

• But implementation code is short
• Little busy waiting if critical section rarely occupied

– Applications may spend lots of time in critical section
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The Bounded-Buffer Problem

int n;

mutex access;

semaphore empty;

semaphore full;

init(&access,1);

init(&empty,n);

init(&full,0);

producer consumer

shared buffer
capacity n items

access
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The Bounded-Buffer Problem

producer consumer

Producer

do {// produce item and save

wait(&empty);
wait(&access);
// add item and save
signal(&access);
signal(&full);

} while (true);



do {// produce item and save

wait(&empty);
wait(&access);
// add item and save
signal(&access);
signal(&full);

} while (true);
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The Bounded-Buffer Problem

producer consumer

critical section
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The Bounded-Buffer Problem

producer consumer

Consumer

do {  wait(&full);

wait(&access);
// remove item and save

signal(&access);
signal(&empty);

// consume save item

} while (true);
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The Bounded-Buffer Problem

do {  wait(&full);

wait(&access);
// remove item and save

signal(&access);
signal(&empty);

// consume save item

} while (true);

producer consumer

critical section
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Monitor
• Semaphores are low-level synchronization resources.

• A programmer’s honest mistake can compromise the entire system (well, that is 
almost always true). We should want a solution that reduces risk.

• The solution can take the shape of high-level language constructs, as the monitor 
type:

A procedure can access only local 
variables defined within the monitor.

There cannot be concurrent access to 
procedures within the monitor (only one 
process/thread can be active in the 
monitor at any given time). 

Condition variables: queues are 
associated with variables. Primitives for 
synchronization are wait and signal.

monitor mName {
  // shared variables 
declaration
  procedure P1 (…) {
     …
  }
  procedure Pn (…) {
     …
  }
  init code (…) {
    ….
  }
}
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Monitor
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Deadlock and Starvation
• Deadlock – two or more processes are waiting indefinitely for an event 

that can be caused by only one of the waiting processes.

• Let S and Q be two semaphores initialized to 1
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• Starvation  – indefinite blocking.  A process may never be removed 
from the semaphore queue in which it is suspended.
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The Dining-Philosophers Problem
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The Dining-Philosophers Problem

thinking

hungry eating

State diagram for a philosopher
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The Dining-Philosophers Problem



CSCI 315 Operating Systems Design 27

The Dining-Philosophers Problem
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The Dining-Philosophers Problem
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The Dining-Philosophers Problem
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The Dining-Philosophers Problem
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The Dining-Philosophers Problem



Limit to Concurrency

What is the maximum number of 
philosophers that can be eating at any 
point in time? 
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Philosopher’s Behavior

• Grab chopstick on left
• Grab chopstick on right
• Eat
• Put down chopstick on right
• Put down chopstick on left
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How well does this work?
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The Dining-Philosophers Problem
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The Dining-Philosophers Problem

Question: How many philosophers can eat at once? How 
can we generalize this answer for n philosophers and n 
chopsticks?

Question: What happens if the programmer initializes the 
semaphores incorrectly? (Say, two semaphores start out a 
zero instead of one.)

Question: How can we formulate a solution to the 
problem so that there is no deadlock or starvation?


