
CSCI 475 Learning Java Exercise #2 Fall 2004

More Java

Objectives:

1. To explore some differences between Java and C++.

2. To write Java applications that use methods and classes.

WARNING: Our Java textbook is the sixth edition and covers the new release of Java (Java 1.5).
We are currently running Java 1.4. I have asked for Java 1.5 to be installed. There are significant
differences between Java 1.4 and Java 1.5. Be warned that some of the examples in the sixth edition
will not run under Java 1.4.

Preparation: Before Exercise read the following chapters in Java: How to Program by Deitel and Deitel,
fourth edition: Chapters 6-10 (6-11 in fifth; 6-10, 29 in sixth).

Assignment:

This is a collection of small exercises that point out some novel features in Java as well as some pitfalls that
some C++ programmers have in programming in Java.

1. Primitive Types Vs. Objects:
Java has primitive types, i. e., int, boolean, byte, char, float and double which have some subtle
differences from C++ (See page 183 in fourth edition (153 in fifth; Appendix D in Sixth) of Java Text).
For examples, int is always 32 bits in Java whereas in C++ it depends on the computer platform. In
Java, byte is 8 bits while char is 16 bits to store international characters. The use of the primitive
types are cleaner than in C++. For example, the if, and while statements require a boolean expression
whereas in C++ one could use an int. Therefore, in Java you would say

while(true) {
}

instead of while(1).

Java makes major distinctions between primitive types and objects. Primitive types can be just de-
clared while objects such as arrays must use new. String is an exception – it is an object where you
do not need to use new. In Java you use new a lot more than in C++. For example, to declare an array
you must use new as follows:

int i;
int a[]; //in Java can’t specify array dimension in a type expression
a = new int[10];

i = 2;
a[i] = 7;

System.out.println("i is " + i + " a[i] is " + a[i]);

CSCI 475 Fall 2004 1 Learning Java Exercise #2

2. Passing Parameters to a Method:
Passing primitive types to a Java method (function in C++) is always done by call by value. There is
no call by reference mechanism such as the & symbol in C++. Objects always pass their reference to
the method (You can think of this as a pointer to the object.) Remember from last week that Java does
have pointers (references) but you can’t do arithmetic on references and there is no indirect operator
(*) in Java as in C++. See page 329 fourth (293 in fifth; 306 in sixth) edition of Java text.

Write a Java application that allows the user to enter up to 20 integer grades into an array from
System.in. (See Marvin Solomon’s web pages if you need help. There is a link to them on the CS479
web pages.) Stop the loop by typing in -1. Your main method should call an Average method that
returns the average of the grades. Use the DecimalFormat class (see page 171, 381 fourth (142 in
fifth. In sixth, see Chapter 29 for some new Java 1.5 features to use instead of DecimalFormat.)
edition of Java Text and the System.out.println method to print the average to 2 decimal places.

Hint: To make the Average method act like a free function in C++, make it static.

A static method is called by using Class-name.method-name() and not an object name. And all the
calls use the same state of instance variables. Be careful with the use of static keyword. Normally we
avoid its use except with main.

3. A Common Design Pattern for Java Applications:
Java has no top-level or global variables or functions. A Java program is always one or more classes.
A file may contain several classes but only one can be public and that class must have same name as
the file with .java extension. A class without a qualifier, e.g., the keyword public, is known only
to the current package. Only two things may appear before the first class construct - package and
import statements.

Because of this requirement that a Java program must be a set of classes, many programmers use a
common design pattern for a Java application as shown below:

class Ex2Part3 {

// Instance objects (data members in C++) traditionally after class.
// Used to communicate information across the class’s methods.
private int a;

// Constructor
Ex2Part3 ()
{

a = 7;
}

// Other methods

void Print()
{

System.out.println("a is " + a);
}

// main method
public static void main (String args [])
{

// Create a Ex2Part3 object called p
// which automatically calls the constructor.

CSCI 475 Fall 2004 2 Learning Java Exercise #2

Ex2Part3 p = new Ex2Part3();

// Call other methods as needed.
p.Print();

}
}

The idea here is that the main method creates an object of the class which automatically calls the
proper constructor then uses the object to call other methods. Notice how private instance variables
are used to communciate objects across methods. To C++ programmers this structures may seem a
little strange but it is very common in Java programs. You need to become familiar with it as you will
use it often.

Copy your Java application of Exercise 2 into a new file and rewrite it to use the above design pattern.
No longer make the Average method static.

4. Exceptions:
In many places, Java requires you to use exceptions such as when reading input with the method
readLine. Exceptions in Java are really handy and you should learn to be comfortable in using them.

Copy the program in Exercise 3 to a new file and add exception handling code to catch the exception
thrown by the Integer.parseInt(line) method when the user types in a non-integer like “cat”. Modify
the code such that your program tells the user that what they typed was not legal and to retype.

See Chapter 14 fourth (Chapter 15 in fifth; Chapter 13 in sixth) edition of the Java text for information
on exceptions. See especially the tables on pages 821-824 fourth (tables removed in fifth, see page
750; page 649 in sixth) edition for the proper exception class to use.

5. Strings:
Strings are true objects in Java. Strings are different from the string class in C++ libraries in that
Java Strings are immutable, i. e., you can’t modify the value of a String. (See page 429 fourth (508
in fifth; 1352 in sixth) edition and Chapter 10 (Chapter 11 in fifth; Chapter 29 in sixth) edition of
Java text.) For example, that means you can’t alter the third character in a String. However, you can
reassign a String object a new value such as shown below:

String s1, s2;

s1 = "WOW";
s2 = "BOW";
s1 = s2 + " " + s1;

System.out.println(s1);

If you want to modify a string, use the StringBuffer class (See page 559 fourth (523 in fifth; 1364 in
sixth) edition in Java text).

The most common error with strings is when comparing them. The following is probably not what
the programmer intended.

String s1;

if(s1 == "WOW") // WRONG!

CSCI 475 Fall 2004 3 Learning Java Exercise #2

{
System.out.println(s1 + s2);

}

This compares the two references (pointers) for equality! With String use the equals method.

String s1;

if(s1.equals("WOW"))
{

System.out.println(s1 + s2);
}

Any Java object that can be compared for equality will have an equals method. And if you write your
own classes where you test for equality, you should name your method equals.

Copy your program of Exercise 4 to a new file and change the program to stop the loop when the user
types the word “done” instead of -1.

6. Using the Java Math Class Methods and the Java API:
Spend some time and focus on the Math class methods on pages 249-250 fourth (219 in fifth; 235 in
sixth) edition to see what is available. On page 261 fourth (230 in fifth; 249 in sixth) edition, you can
learn how to use randum numbers in Java.

Bookmark in your browser the following URL for the Java 2, v 1.4 Application Programming Interface
(API):

http://java.sun.com/j2se/1.4/docs/api/index.html

You should learn how to extract useful information from the API.

7. Design Your Own Class:
In Java, all objects extend the class Object directly or indirectly. For example, if you define a new
class Exam as follows:

class Exam extends Object {

}

this is the same as leaving off “extends Object”. In Java’s jargon, we would say Object is the su-
perclass of Exam and Exam is the subclass of Object. By “extends” we mean that Exam inherits
methods and data instances from Object. (See page 382 fourth (345 in fifth; 421 in sixth) edition and
Chapter 9 in fourth (10 in fifth; 9 in sixth) edition of Java text for more on inheritance.) One method
that is part of the Object class and, therefore, inherited by all objects is toString. See page 384 fourth
(407 in fifth; 424 in sixth) edition and 456 fourth edition. If you use an object in a System.out.print
method, Java automatically calls the toString method associated with that object. Therefore, you
should override toString when you create your own classes.

You are to write a new Java application which allows the user to enter up to 20 student names and their
exam scores. The information will be stored in an array of a user-defined class Exam. This second
class will be placed in the file after the primary class. The primary class should have a method to read

CSCI 475 Fall 2004 4 Learning Java Exercise #2

in the information and a second method to print the information. Keep the Exam class as small as
possible, i. e., only methods that directly operate on the two data members name and score.

Your class Exam should override method toString to allow the printing of the name and score with
the following:

System.out.println(grades[i]);

You will need to make your toString method public.

In contrast to the int array of Exercise 1, this exercise involves an array of objects, i. e., Exam
objects. As in C++, using the new method to create an array of a class of objects only creates an array
of references. You still need to use the new method repeatedly to create each element of the array.

Hand in:
For Exercises 2, 3, 4, 5 and 7, combine all the Java listings and outputs from runs into one handin file
with a .java extension. Print using the print alias set up in Learning Java Exercise 1.

CSCI 475 Fall 2004 5 Learning Java Exercise #2

