

BUCKNELL UNIVERSITY

CSCI 204 – INTRODUCTION TO UML DIAGRAMS IN DIA
BY KATIE HEISE

What is Dia?
Dia is a drawing program that can be used to create diagrams. Dia includes a variety of basic tools
like lines and boxes and can load “sheets” – collections of tools that are used in a specific type of
diagram. Most diagram objects have handles to which lines can be connected to form graph
structures. When the objects are moved or resized, the connections will follow their respective
objects. In this course, we will concentrate on working with UML class boxes.

What is UML?
Unified Modeling Language. UML diagrams are class diagrams that allow documentation of data
members, member functions, interfaces, and relationships between classes. UML is one way to
represent various views of a piece of software – the user’s or client’s view or the source code, for
example. The diagrams provide a logical structure or outline for writing code.

Starting Dia For UML Diagrams on the Sun Workstations

1. Type ‘dia &’ at the command line prompt and press Enter. The main window should appear

after an introductory title dialog.
2. Select UML from the menu in the middle of the Dia window. A

collection of tools for working with UML will appear below the
menu. (See Figure 1 at right.)

Figure 1

Left click
here

Select
“UML”

3. To open an existing file, choose Open from the File menu. Double
click the desired file in the Open Diagram dialog or select the file
and click OK. Skip steps 4 and 5.

4. Create a new diagram by clicking on New from the File menu. Y
will see an empty grid.

ou

5. Select the Create a class icon. Then, left click on the grid. Your
screen should resemble Figure 2.

Figure 2

Create a
class icon

Working With UML Diagrams

General notes: To access menus while working in the grid window, right click on the grid or on the
object of interest. Don’t forget to save using File → Save (CTRL-S) or File → Save As…
(CTRL-W). Open an existing file from the Dia main window or from the grid by selecting File →
Open (CTRL-O).

How do I edit my class?
To set the fields in your class box, select the box by left clicking. Double click within the class box
to bring up the Properties window (or right click to bring up the menu and select Dialogs →
Properties). See the BankAccount example on the following pages for specific information on
creating and editing meaningful class diagrams using the Properties window.

How are classes organized?
Class diagrams are boxes divided into three sections. The class name appears at the top of the
box. The data contained by each object of the class is found in the middle section, and the
operations or functions compose the final section.

Class name

Data

Operations

The a e BankAccount class:
• A B k o attributes, Balance and Name.

le.

• Ban c
o a new instance of BankAccount and takes two arguments –

ts.
o arguments.

.
o deposit takes a double argument.

 UML. ‘+’ indicates that a data member
r member function is public; ‘-‘ indicates that it is private.

ranslating the class diagram into C++ yields the following code:

t {

t, string name); // constructor

void deposit(double amount);
};

 cl ss diagram above provides a great deal of information about th
an Account object has tw
o Balance is a doub
o Name is a string.
kA counts may be manipulated by several operations:
 The constructor returns

a double and a string.
o getBalance returns a double and takes no argumen
o getName returns a string and takes n
o withdraw takes a double argument

Note that instead of the C++ void withdraw(double amount), for example, UML uses the
syntax withdraw(amount:double). void is not used in
o

T

class BankAccoun
 private:
 double Balance;
 string Name;

 public:
 BankAccount(double amoun
 double getBalance();
 string getName();
 void withdraw(double amount);

Example – Creating the BankAccount Class

Double click inside a new class box to open the Properties window.

Figure 3 – Step 1 of BankAccount Specification

Balance

Choose visibility
option – private, in
this case.

Add name and
type of the
attribute.

Click New to add
each new attribute
(data member).

Figure 4 – Step 2 of BankAccount Specification – Adding an Attribute

Enter name
of class.

Figure 5 – Step 3 of BankAccount Specification – Adding the Constructor

Click New
to add each
new
parameter.

Specify the
parameter name
and type.

Give the
constructor the
same name as
the class.

Set Visibility to
Public so client
programs can create
BankAccount
objects.

Type
‘constructor’
under
Stereotype*.

Click New
to add the
constructor.

* In UML, constructors do not have to share the name of the class. Constructors are identified with
the stereotype <<constructor>>. When a stereotype – anything of the form <<…>> – is added to
an aspect of a UML diagram, the meaning of that aspect becomes more specialized. In the case
of <<constructor>>, the operation is forced to create and initialize a new object of the appropriate
type. A constructor should not be documented as “returning” a type; it instead creates a new
object.

Figure 6 – Step 4 of BankAccount Specification – Adding Other Operations

First, click New
to add each new
function.

If the function has
parameters, while the
function name is
highlighted in the list at
the top of the window,
click New to add each
new parameter. Specify
the name and type of the
parameter.

Return type of
the function
(leave blank if
void).

Set visibility.
All member
functions are
public in this
example.

To edit the class’s attributes or operations, click on the appropriate tab of the Properties window.
Left click on an item in the list at the top of the window to select the attribute or operation to be
modified. To modify a parameter, select the function and then click on the parameter. Blue
highlighting indicates the selected component(s).

* For const functions or const or const & (reference) parameters, enter ‘const’ before the type

name in the operation’s or parameter’s Type text box (on the Operations tab of the Properties
window) and, if appropriate, ‘&’ after the type name. Add const to data members in the same way
under the Attributes tab of the Properties window.

Printing a Diagram
Unless instructed otherwise, Dia tends to print large diagrams that extend over several pages. The
dark blue lines on the grid mark the boundaries of each printed page. To solve this problem, try
one of the following:

• Select File → Page Setup… by right clicking on the grid and select the Fit to: option under
Scaling. The first value is the number of pages the diagram(s) on the grid will occupy
horizontally, and the second value is the number of pages the diagram(s) will occupy
vertically. This option will usually be set to 1 by 1.

• Select File → Page Setup… as described above and set Scale under Scaling to the
desired value. 30% often works well.

Print the diagram with the File → Print Diagram… (CTRL-P) command. Type the appropriate
printer command in the text box (‘a2ps –Plwc’ for Dana 231 and ‘a2ps –Plw3’ for Dana 320).
Note that you may also print to a file.

Modeling Relationships

Associations
Before writing code, it helps to produce a model of the concepts involved, which can lead to
easy identification of the necessary classes, functions, and variables. The simplest way to
do this is to create a class box for each of the obvious classes in the problem and add
associations between them. Click on the Association icon (shown at right) and draw a link
between two classes on the grid by left clicking and dragging. Figure 8 shows the classes
expected in the initial design of software that models a university. Since so many classes are
involved, the details of operations and attributes are omitted, leaving only the class name in each
class box. To achieve this effect, double click on a class box to open the Properties window, go to
the Class tab, and clear the check boxes for Attributes visible and Operations visible.

Figure 8 – Associations
Modeling a small campus. Taken from http://www.csci.csusb.edu/dick/samples/uml1.html.

Associations can be modified to provide more specific information. Double click on the association
(the dark line connecting two classes) to bring up the Association window. All fields are optional.
Only one of the four Aggregate and Composition boxes may be checked at any given time.
Dependencies and composition will be covered in more detail in the next few sections of this
tutorial.

See Figure 10 on the next page for a revised version of Figure 8. Association and role names and
multiplicities have been added.

Select the direction of the
association – None, From
A to B, or From B to A.
None is the default.

Give the association a
name. What does it
represent?

What role does
each class play in
the association?

A number. How
many objects of the
class on this side
can be involved in
the association? For
a one-to-many
association, for
example, side A’s
multiplicity would be
1 and side B’s, 0..*

Aggregation – the
other class is part
of this one but also
has an independent
existence.

Composition – the other class
is part of this class /
possesses a component of
the other class

Figure 9 – The Association Window

http://www.csci.csusb.edu/dick/samples/uml1.html

Figure 10 – Modeling a Small College
Association names and multiplicities have been added. Taken from

http://www.csci.csusb.edu/dick/samples/uml1.html.

Dependencies
When one class makes use of another in some way, the relationship is represented by drawing a
dashed arrow from the client class to the class providing the service. Identifying dependencies
is simple. If the code of class A contains the name of another class in the diagram, class B,
there should be a dependency drawn from A to B if no other connection exists between them.
Regardless of the number of uses of class B within A, only one dependency arrow is necessary.
The Create a dependency icon is shown at right.

Figure 11
Each function in class A individually gives rise to
a dependency on B. This figure demonstrates

different ways to incur a dependency.

class A {
 public:
 B getB(); Figure 12

Class A uses class B.
Class A depends on class B.

 void processB(B b);
 void bInImplementation();
};

void A::bInImplementation() {
 B b;
 …
}

In the following cases, do not use a dashed arrow dependency. Dia and UML provide more
specific tools to represent such relationships:

• One class has a data member of the other’s type – Composition (See the following section.)
• One class has a pointer or reference to the other – Aggregation

(See http://www.csci.csusb.edu/cs202/uml1b.html#Aggregation.)
• One class is derived from the other – Generalization (“Every A is also a B”)

(See http://www.csci.csusb.edu/cs202/uml1b.html#Generalization.)
• One class implements the other – Abstraction

(See http://www.csci.csusb.edu/cs202/uml1b.html - Abstraction and Implementation.)

http://www.csci.csusb.edu/cs202/uml1b.html
http://www.csci.csusb.edu/cs202/uml1b.html
http://www.csci.csusb.edu/cs202/uml1b.html
http://www.csci.csusb.edu/dick/samples/uml1.html

Composition
In general terms, composition is a “has a” relationship. For example, a person object would have
arms, legs, and eyes as parts. A car has an engine, a chassis, and a set of tires. C++ structs are
prime examples of something that is, at heart, a collection of parts. And data members are parts of
the state of each object of a class.

UML has special notation to show a composition relationship. Add a general association
connecting the two classes (discussed above) and select the Composition check box for the side
with the class that has a component of the other class or type.

UML uses a black diamond to indicate that an item is stored within
another piece of data and to indicate that a class of objects has
responsibility (temporary or permanent) for the existence of one or
more objects of the class at the other end of the association. When
an item is stored inside an object, the creation or deletion of the object
will automatically cause the creation or deletion of its parts.

Figure 13

In Figure 13, for example, the creation of Course object causes a
vector of Day objects and an array of Time objects to be created.
These data structures are part of the Course object’s state and will be
eliminated when the Course is deleted or falls out of scope.

A Course has a set of Days and
takes place between 2 Times –
beginning and ending

Dia / UML Resources

Feel free to experiment with Dia and with the more advanced options for UML diagrams. The
following websites may help:

• http://www.lysator.liu.se/~alla/dia/diatut/all/all.html

Dia tutorial – installation, the basics, and advanced formatting
• http://www.rational.com/uml/

UML resource center and documentation; from the developers
• http://www.csci.csusb.edu/dick/cs202/lab02.html

Very good resource; follow links to find information on basic and more advanced topics
• http://www.csci.csusb.edu/dick/samples/uml1.html

Simple modeling techniques; relationships between C++ and UML

http://www.lysator.liu.se/~alla/dia/diatut/all/all.html
http://www.rational.com/uml/
http://www.csci.csusb.edu/dick/cs202/lab02.html
http://www.csci.csusb.edu/dick/samples/uml1.html

	Starting Dia For UML Diagrams on the Sun Workstations
	Working With UML Diagrams
	How do I edit my class?
	How are classes organized?
	Printing a Diagram
	
	Associations
	Dependencies
	Composition

