CSCl 479 Simple Clients and Servers Fall 2009

Simple Clients and Serversin Java

Due Monday September 14, 2009

Objectives:

1. Design and implement a simple server in Java.
2. Design and implement a simple client in Java.
3. Add Java threads to a server.

Preparation: Before doing this exercise read in the following tdava: How to Program by Deitel and
Deitel, Eighth edition pages 1131-1156 (Seventh editioamggs 1119-1144; Sixth edition: pages 1106—
1132) an introduction to networking and writing clients asatvers. See Chapter 26 of Deitel and Deitel's
text for use of Java threads (Chapter 23 in Sixth and Sevetitioms).

Exercices:

In this exercise you will construct a Java application fomage server and a Java application for a simple
client which communicates with the serveNO graphics in the exercise! Graphics were left out on
purpose! Note: For this exercise both client and server rhastn campus because Bucknell's wirewall
blocks most ports.

1. The Client Application: Write a Java application which implements a simple clierite €lient should
connect to your server which will be running on another heg,,castor. Use anyport above 1024.
Note that only one server on a host may use a specific port numbeerefore, if you receive a
message of “port in use”, just select another port from 1@266535.

In the client, hard code which host will be running your serve

The client should repeatedly read a line a text frépstem.in and send the line to the server. Then
the client receives a new line of text from the server andtgrinto System.out. If the user types
exactly “quit”, the client sends it to the server to closeatginection and the client should close its
connection and exit.

Using the example of a client (for example, on pages 1117211 3ixth edition; on pages 1130
1144 in Seventh edition; on pages 1141-1156 in Eighth edias a model, write the Java code and
compile it. If the server is not running, when you run themljeyou should have it print out a message
on System.err something like “Server is down. Make sure server is runnirgj!fi

2. The Server Application: Write a Java application which implements a simple servercethe socket
has been opened, the server waits for the client. After aedion with the client, the server repeat-
edly receives a line of text from the client, changes theitegbme way, and sends it back to the client
until the client sends exactly “quit”. When the server rgesi“quit”, it sends a usual message to the
client, closes the client’s connection and waits for anottient.

The server should print messagesSy@tem.out to show what it is doing. For example: “Waiting for
a client ...” “Connected with client on lemon”.

Using the example of a server (for example, on pages 111#-Skih edition; on pages 1130-1144
in Seventh edition; on pages 1141-1156 in Eighth editio@rasdel, write the Java code and compile
it. Run the server first on the proper host, eagstor, then run your client on a different host.

CSCI 479 Fall 2009 1 Simple Clients and Servers

Note: Your server application should only be able to handie cdlient at a time. After one client
disconnects, the server should be be able to handle a setiendand so on. Us€ontrol-c to kill
your server when needed.

3. Add Java Threadsto Server: You are to redo the server application in the above to alloversé clients
to connect to the server at one time. There is no need for ymotdify your client application.

In your new server, you will need to create a new Java threagdoh client. Full details of Java
threads are covered in Chapter 26 of Deitel and Deitel's axta However, you don'’t need to under-
stand all the ins and outs of Java threads to do this exercise.

Use the following code as a model. Study it carefully.

/1 a Java server application with a newthread to serve each new client
/1 By Dan Hyde, Sept 24, 2001

i mport java.net. *;

i mport java.io.x;

public class TCPServer {

public static void main(String args[]){

try {

int serverPort = 7896;
Server Socket |istenSocket = new Server Socket (serverPort);

while(true) {
Systemout.printin("Waiting for a client");
Socket clientSocket = |istenSocket.accept();
Systemout. println("Connection received from" +
cli ent Socket . get | net Addr ess() . get Host Name());
/] start a new thread
ClientThread ¢ = new CientThread(clientSocket);
}
}
catch (1 OException e){
Systemerr.println("Error in connection

+ e. get Message());
}
}
}

class dientThread extends Thread {

bj ect Qut put Stream out = nul |
Qoj ectlnputStreamin = null
Socket client Socket ;

public dientThread(Socket ad ientSocket){
try{
client Socket = ad i ent Socket;
out = new Obj ect Qut put St rean(cl i ent Socket. get Qut put Strean());
in new Obj ect I nput St ream(cl i ent Socket . get | nput Stream());

this.start(); // call run()

CSCI 479 Fall 2009 2 Simple Clients and Servers

}
catch (1 Oexception e){

Systemerr.println("Error 1 in connection " + e);
System exit(0);
}
}

public void run() {
/1 Assumes client sends a string, receives a string response
/1 then quits.
String lineln = ""

try {
/1 must cast from Object to String

lineln = (String) in.readOject();

Systemout.println("Received from" +
cli ent Socket . get | net Addr ess() . get Host Nane() +
" + lineln);

/1 inmportant to create a new object in this case a String
out.witeObject(new String("WON " + lineln));
}
catch (Cl assNot FoundException e){
Systemerr.println("Cass not found " + e);
System exit(0);
}
catch (1 OException e2){
Systemerr.println("Error inl/O" + e2);
System exit(0);

}

!/l close client

try {
in.close();

out. cl ose();
cli ent Socket . cl ose();
System out. println("Connection closed from" +
cli ent Socket . get | net Addr ess() . get Host Nanme());

}
catch (1 OException e3){

Systemerr.printin("Error 2 in connection " + e3);
System exit(0);

}

One way to create threads is to have a classdkéiends Thr ead. Any class that extends the class
Thr ead must have @ubl i ¢ voi d run() method. You start the thread by calling thear t ()
method of the super cla3$r ead which calls your un() method.

The idea of the exercise is to have separate threads thahgerb process existing clients while the
server waits for requests from new clients. When the serveef@s a new client, the server creates a
new thread to handle it and goes back to waiting for a newtclien

CSCI 479 Fall 2009 3 Simple Clients and Servers

Using Java threads for your server is relatively easy bex#us different threads do not share infor-
mation nor need to coordinate between themselves. Haviegvarsspawn a new thread (or process)
for each new client is very common in client/server appiaa.

CSCI 479 Fall 2009 4 Simple Clients and Servers

