
CSCI 479: Computer Science Design

1 Objectives

• Learn to write unit tests with JUnit .

• Explore enumerated type in Java.

2 Preliminaries

In Eclipse, create a new Java Project and import the two files you will need from

∼cs479/public html/2009-fall/testingEx

2.1 Cash Register

CashRegister is a very simple representation of a cash register. You use its meth-
ods as follows.

1. Use recordPurchase() to record the amount of a purchase.

2. Use enterPayment() to enter the amount of the payment.

3. Use giveChange() to determine how much change is due. This method
resets the instance fields to zero.

The main() method contains an example. Run the program to see how it
works. Note that the expected result and the actual result are very close, but not
identical.

2.2 Money Enumerated Type

Money is an enumerated type that is used to represent money. An enumerated type
(enum) is used to represent a type that has just a few instances. Take a look at this
enum and you will see that it looks very similar to a class definition. The only
differences are that it uses the word enum instead of class, and it declares all of
its instances right inside its definition. Open the Money enumerated type now and
take note of these features.

At the beginning of the enum definition you will see the declaration of its in-
stances. Each declaration (PENNY, NICKEL, . . .) invokes the constructor for the
enumerated type and creates one instance. To reference the PENNY instance use
Money.PENNY. See the main() method in CashRegister for more examples.

November 2, 2009 1 Exercise on JUnit

CSCI 479: Computer Science Design

3 JUnit Testing

In this exercise, you will write JUnit tests for the CashRegister class.
To test the methods in a class, you will produce another class that contains all

of the tests.

3.1 Create a Test Class

Eclipse will do most of the work of creating a test class for you. Here are the steps
you need to follow.

• Begin by highlighting CashRegister.java in the package explorer. Right
click and select New→ JUnit Test Case.

• In the dialog that appears, click the radio button that says New JUnit 4 test.
Eclipse will have selected CashRegisterTest as the name of the class.
There’s no reason to change this.

Click on the check box that tells Eclipse to generate comments.

Click Finish.

A dialog box will appear with a warning that JUnit 4 is not on your build
path. Click on the OK button to add it.

3.2 Write a Test

Each test that you write must be preceded by an annotation that identifies it as a
test. Enter the following test stub in the new class. @Test is an annotation that
identifies this new method as a test.

@Test

public void testSimpleCase () {

}

Eclipse will indicate that it doesn’t recognize the @Test annotation and offer to
import org.junit.Test. Ask it to do that. Now enter the rest of the test.

private static final double EPSILON = 1.0e-12;

@Test

public void testSimpleCase () {

CashRegister register = new CashRegister ();

register.recordPurchase (1.82);

register.enterPayment (1, Money.DOLLAR);

register.enterPayment (3, Money.QUARTER);

register.enterPayment (2, Money.NICKEL);

double expected = 0.03;

November 2, 2009 2 Exercise on JUnit

CSCI 479: Computer Science Design

double actual = register.giveChange ();

assertEquals(expected , actual , EPSILON);

}

Eclipse should indicate an error when it sees assertEquals(), but it will suggest
the import statement you need to fix it. Import the suggested file.

Note: All test methods should be public, have a void return type, and have no
parameters. You should chose the name of each test method carefully since the
name is what is reported by JUnit when an error is discovered.

3.2.1 Things to Watch For

Here are some things that you should pay attention to when comparing doubles.

1. It is almost always an error to check if two doubles are equal. Remember
the output we got when we ran the main program? It told us that the actual
result was

0.030000000000000027

when we expected 0.03. The problem is that there is almost always some
inaccuracy when computing with doubles with fractional parts. Instead of
checking that two doubles are equal, it is always better to see if they are
very close. That’s why assertEquals() has an additional parameter when
comparing doubles. You need to tell it how close the doubles should be
before they are considered equal. In our test we are telling JUnit that two
doubles must be within 10−12 of each other to be considered equal. We
defined this tolerance in the constant EPSILON which you will use for other
tests.

This third parameter for assertEquals() is not used when comparing most
other types of objects.

2. If you omit the third parameter to assertEquals() when comparing dou-
bles, it is not a syntax error, but you will get unexpected results. For example,
if you eliminate EPSILON and change the expected result to 0.02 (which is
wrong), the test will pass! It’s not clear why this happens, but be aware that
the problem exists.

3.3 Run the Test

Remove the main() method in CashRegister. It’s no longer necessary since you
have written JUnit tests to do the same thing.

November 2, 2009 3 Exercise on JUnit

CSCI 479: Computer Science Design

Select Run → Run As → JUnit Test. You should see a green bar indicating
that the test succeeded.

Click on the Package Explorer tab, and if necessary open
CashRegisterTest. Change the “expected” variable to 0.04 and run under
JUnit again. You should see a red bar and a list of tests that failed each marked
with a blue x. In this case, only one test failed. Double click on the blue x next to
testRecordExpense and Eclipse will highlight the assert statement that failed.

When you write tests, you should try to test as much of your code as possible.
Write tests for all of your methods except for setters and getters. Try to have tests
that tries both sides of every if statement.

3.4 Testing an Exception

Click on the Package Explorer tab, and if necessary open CashRegister. You
should see that recordPurchase() needs a test to see if it throws an exception
when its parameter is negative. Enter the following test for the exception.

@Test(expected = IllegalArgumentException.class)

public void testRecordExpense () {

CashRegister register = new CashRegister ();

register.recordPurchase (-3.12);

}

The @Test annotation tells JUnit that we expect this method to cause an illegal
argument exception. If it does not happen, it’s an error. Click the JUnit tab in the
upper left of the Eclipse window and press the run button. It’s a green circle with a
white arrow inside. You should see a green bar.

Change the the -3.12 to 3.12 in the above test and run again to see the test fail.

4 Fixtures

Code that is repeated before each test is called a fixture. So far, you have written
two tests. Each test needed to create a CashRegister object before performing the
remainder of the test. Instead of repeating the code, you will create a fixture. Code
that should be performed before each test is preceded with a @Before annotation.
Code that is performed afterwards is preceded with @After. You will need to have
Eclipse supply the proper import statement.

Begin by creating a CashRegister instance field.

private CashRegister register;

Then create a method which will be executed before each test.

November 2, 2009 4 Exercise on JUnit

CSCI 479: Computer Science Design

@Before

public void setUp () {

register = new CashRegister ();

}

Using the name setUp is traditional, but not required in JUnit 4.
Now you can eliminate the creation of the CashRegister object in each of

your test methods. Do that now and rerun your tests. Everything should still be
working.

The method that is run after each test is traditionally called tearDown. Again,
the name is not required, but it is traditional. We don’t really need a tearDown()
method, but let’s write one anyway to get the practice. Set the register in-
stance variable to null after each test. The setUp() method will create a new
CashRegister object for us.

@After

public void tearDown () {

register = null;

}

Run your tests again to make sure everything is working.
JUnit has test methods called assertTrue and assertFalse that you may

find useful when writing your tests. Each accepts a boolean condition that it expects
to be true or false. For example, if you were writing a test in which you expected
the result to be less than 4, you could write

assertTrue(result < 4);

5 References

1. The complete JUnit 4 API is available at http://junit.sourceforge.
net/javadoc 40.

2. The JUnit home page on SourceForge is here http://junit.
sourceforge.net/. You will find documentation and additional links.

November 2, 2009 5 Exercise on JUnit

