
 1

CSCI 204 – Introduction to Computer Science II

Lab 8 – Priority Queue ADT

1. Objectives
The objectives of this lab are to:

• Become familiar with priority queues.

• Exercise inheritance.

• Implement a priority queue using a traditional linked list.

• Implement a fast priority queue using an array of queues.

• Understand why the fast priority queue is more efficient in time than the traditional priority

queue. Understand better the trade-off between time and space.

2. Introduction
A priority queue is a queue where items are associated with a priority value, and are dequeued based on

priority: the item with highest priority is dequeued first in contrast to standard queue, where FIFO order is

enforced. Priority is specified by integers where 0 is the highest priority (most favored) and higher

numbers have lower priority (less favored).

For example, if we insert the following sequence of integers into a priority queue while using the value of

the integer as the priority, 3, 7, 0, 1, 9, and 4, we would result in a priority queue with the values in the

order of 0, 1, 3, 4, 7, 9 with the integer 0 being dequeued first.

This style of queue is used when some items are deemed more important than others and items have to

wait in line. Phone calls to 911 for instance are more important than routine calls between users of

telephone network, and should be given priority in the phone network if too many calls are coming

through a phone service at a time. A business might decide that internet traffic associated with online

meeting or credit card processing software is more important than web surfing when network demand is

high. A printer might prioritize short documents first so fewer people wait around a high-traffic printer.

The class of priority queues as described above in which the smaller priority value is more favored is

called MIN-Priority Queue. Depending on the task/application we can think of another implementation of

the priority queue data structure, where task(a) will be processed before task(b) if the priority value of a is

greater than that of b. This type of implementation is called MAX-Priority Queue. We will consider the

MIN-Priority Queue only in this lab.

3. Getting Started
Begin by creating a lab08 directory in your csci204/labs directory, and copy the following files

from the directory ~csci204/2017-fall/student/labs/lab08

FastPriorityQ.py PriorityQ.py main.py

These files give you a starting point for your lab work.

CSCI 204 Introduction to Computer Science II

Fall 2017 Lab 08 2

4. Implement a Queue
Implement a standard linked list Queue ADT or re-use one from a previous project or lab. The file must

be named Queue.py and the class must be named Queue. Your queue must support the methods of

enqueue(), dequeue(), is_empty(), and len(). The dequeue() must return the item being

removed.

5. Implement a Linked Priority Queue
Your priority queue will be a queue with a singly linked list. Because you have implemented a linked list

based queue, you are asked to use object inheritance to complete the priority queue. That is, your priority

queue should use directly the methods and attributes that are already in the linked list queue class and that

are appropriate for the priority queue. For example, the front and back node in the linked list queue can be

used directly without revision, the __len__() method, the is_empty() method, and the

dequeuer() method can also be used directly. You will have to just implement the proper

enqueue()method because the method in a priority queue is different from the one in a regular queue.

In addition, the node object used in a priority queue differs a bit from the nodes in a regular queue. The

node in a priority queue must have an attribute called priority, in addition to the fields in the node for a

regular queue. You must implement a class called PNode for your priority queue, inheriting from the

Node class implemented for the regular queue. The nodes from the class PNode will be the nodes used

in the priority queue.

Complete the PriorityQueue class in the PriorityQ.py file. Examine the contents of

PriorityQ.py. You are given a partially completed constructor to which you are to add information.

You also need to revise the implementation so the PriorityQueue class inherits from the Queue

class!

The enqueue() method takes two parameters. One is the priority of the item being added and the other

is the item itself. The method needs to add the item to the queue so that it is:

• the last item with its priority

• after any items with a higher priority (lower number)

• before any items with a lower priority (higher number)

The last method you need to complete is the __str__() method. This method should return the name

of the class. The application program may use the name for different purposes, so we suggest you give the

class a name such as “PriorityQueue” without spaces in between words.

Write a method comment block using doc string for each of your three methods that states the purpose of

the method, any preconditions, and what is returned (including values such as None in special cases).

As specified above, you must also implement a class called PNode for your priority queue that inherits

from the Node class implemented for the regular queue.

Your next task is to test the priority queue class you just developed.

6. Use Different Python Classes for the Same Variable to Test Your Queue
Please open the file main.py and examine its content. Note that at the beginning of the file, there are two

‘import’ statements in the program as follows.

CSCI 204 Introduction to Computer Science II

Fall 2017 Lab 08 3

from PriorityQ import PriorityQueue as MyQueue

#from FastPriorityQ import FastPriorityQueue as MyQueue

The second import statement is commented out for the moment. Python allows the import phrase to

specify the name of the class that the application program would prefer to use. In our example, we import

the PriorityQueue from the file PriorityQ.py and the class PriorityQueue is renamed as

MyQueue. The advantage of doing so, as you can probably guess, is that the applications can use the

same class name in their program even though the implementation of the class is different. For example,

throughout the main.py program, the class MyQueue is used as the class name, while different

implementation of MyQueue can be tested separately. As it is, the main.py program uses the priority

queue as the queue data structure. After completing your lab assignment, you can use the fast priority

queue data structure for MyQueue by commenting out the first line of import and uncommenting the

second line of import, without ever changing any other places in the program.

For now, keep the import statements as they are. Test your priority queue implementation by running the

main.py program. The program saves the output of the program to a file named

PriorityQueue.txt. Examine the content of this output file after executing the program main.py.

Your output should be:

Fix broken sink

Order cleaning supplies

Shampoo carpets

Replace light bulb

Pet the dog

Take a nap

Empty trash

Water plants

Clean coffee maker

Remove pencil sharpener shavings

7. Implement a Fast Priority Queue
A FastPriorityQueue implements a priority queue as an array (Python’s built-in list) of queues.

Each item of the array is a linked list that contains elements with the same priority.

First item of the array is a linked list that contains the priority 0 (the highest priority) items, the second

item has a list of the priority 1 items, so on and so forth. If a list is empty, there are no items with that

priority. Items with priority 0 have the highest priority. The FastPriorityQueue constructor

requires a parameter that specifies the lowest allowed priority (highest number). The constructor needs

this information so that it can create and initialize an appropriately sized array. Look at the constructor

code and make sure you understand what it is doing.

Queue 3

Queue 4

Queue 0

CSCI 204 Introduction to Computer Science II

Fall 2017 Lab 08 4

You need to complete four methods for this class to work.

The enqueue() method has two parameters. One is the priority of the item being added and the other is

the item itself. The method needs to add the item to the end of the list specified by the priority. As a

precondition, you can assume the priority parameter will be between 0 and the minimum priority,

inclusive.

The second method you need to complete is the dequeue() method. This method will search through

the lists sequentially until a non-empty list is found. It will remove the first item from the list and return

it. If all of the lists are empty, the method returns a None.

The third method you need to complete is the __len__() method. This method should do exactly what

you think it should do, return the number of elements in the queue. Note now that the elements of the

queue are probably distributed across different parts of the array.

The last method you need to complete is the __str__() method. This method should return the name

of the class. The application program may use the name for different purposes, so we suggest you give the

class a name such as “FastPriorityQueue” without spaces in between words.

Write a method comment block using doc string for each of your three methods that states the purpose of

the method, any preconditions, and what is returned, including values such as None in special cases.

Now test your priority queue implementation by running the main.py program. This time, please

comment out the first import statement and uncomment the second import statement as follows.

#from PriorityQ import PriorityQueue as MyQueue

from FastPriorityQ import FastPriorityQueue as MyQueue

This program will save the output to a file named FastPriorityQ.txt. Examine the content of this

output file after executing the program main.py. Your output should be (the same as before):

Fix broken sink

Order cleaning supplies

Shampoo carpets

Replace light bulb

Pet the dog

Take a nap

Empty trash

Water plants

Clean coffee maker

Remove pencil sharpener shavings

CSCI 204 Introduction to Computer Science II

Fall 2017 Lab 08 5

8. Compare the Priority Queues for Efficiency
Analyze your enqueue and dequeue methods for both the traditional priority queue and fast priority

queue. Figure out the best case run time and the worst case run time and put them in a comment at the top

of these two methods in the two classes. Remember that access to Python’s built-in list (array) is O(1).

 Is the fast priority queue faster for both enqueue and dequeue?

 If you knew most items have the same priority, which implementation of a priority queue should

you choose?

 What if you knew the enqueue and dequeue operations would be interleaved, that is, the enqueue

and dequeue operations are separated evenly, and the items to be added to the queue are evenly

distributed among different priorities?

 With the same interleave condition as above, what if all the enqueue operations would happen

before any dequeue operations?

Explain your reasoning. Write your answer in full sentences. Save your writing in a readme.doc file.

About half a page should be sufficient for your answers.

9. Confirm the Efficiency Analysis with Some Experiments
While algorithm analysis is very reliable, it helps if we actually see some experiment results. The

time_enqueue() method times how long it takes to enqueue 10,000 items. You will now write more

tests to find answers to each of the questions you just answered with reasoning.

 Copy the time_enqueue() method in the main.py file and make a time_dequeue()

method. Enqueue all 10,000 items and then dequeue all 10,000 items. Time the dequeue portion

of the method. Test your method on both Priority Queues.

 Copy the time_enqueue() method and make a time_few_priorities() method. Set

the priorities to only have 3 possibilities 0, 1, and 2, instead of the default 16, 0..15. Time the

enqueue portion of the method (the same as the time_enqueue() method). Test your method

on both Priority Queues.

 Copy the time_enqueue() method and make a time_interleaved_enq_deq()

method. In this method you will make it so enqueue dequeuer are interleaved. We can assume

that the random number generators can produce evenly distributed integer values for the given

range. Test your method on both Priority Queues.

 Copy the time_interleaved_enq_deq() method and make a

time_enqueue_before_dequeue() method. Revise the method such that all enqueue

operations take place before dequeue operations. But we want to have the items evenly

distributed across different priority levels. Test your method on both Priority Queues.

While the exact number of seconds to complete a task may vary a little bit, the trend should be very clear

that if the items in the queues are randomly (evenly) distributed, the fast priority queue should perform

better than the traditional linked list.

10. Submitting Your Results

CSCI 204 Introduction to Computer Science II

Fall 2017 Lab 08 6

Clear all unnecessary files, make a zip file out of all the submission files, then upload the zip file to

Moodle and double check your submission to make sure your files are all uploaded successfully.

