Abstract Data Type

Consider the examples ...

* The Date class we saw in CSCI 203
— d = Date()
— tomorrow = d.nextDay/() gives a new date
— d.is_week_day() gives True of False

A GradeBook class

— b = GradeBook(student_list, course_list)
— print(b.get_grade('Sam Brown’, “CSCI 204"))

What’s in common?

In both cases, we (the application program)
just wanted to use the pre-built class (%ate o1

GradeBook).

We don’t care how Date or GradeBook was
implemented.

We are not supposed to visit or change the
implementation of Date or GradeBoo
classes.

Using ADT makes our lives much easier!
We don’t need to re-invent the wheels!

Abstract Data Type

« An abstract data type (ADT) is a collection of
data and a set of operations on the data.

« An ADT has the following features.

o Information Hiding: It hides implementation
details from the users. That is, it presents what
the ADT does, not how it does.

o It provides an interface that other programs can
use to access the functionality of the ADT.

Information Hiding

« ADTs can be viewed as black boxes:
. functionality is provided through an interface.
« Matrix in the coming lab!

 implementation details are hidden inside the
box.

string ADT

User
Program

Types of Operations

« ADT operations can be grouped into
four categories:
« constructors — creates it
o accessors — gets information
. mutators — changes information
. iterators — navigates through it

What does information
hiding look like?

Date example
Counter example
Inventory example

You will be working on Matrix in the
coming lab

Using the ADT

« We can use the ADT without knowing
how it's implemented.

o Reinforces the use of abstraction:

« by focusing on what functionality is

provided

. instead of how that functionality is
implemented.

Detining Operations

« The ADT definition should specity:

. required inputs and resulting outputs.

o state of the ADT instance before and after
the operation is performed.

Preconditions

« Condition or state of the ADT instance
and data inputs before the operation is
performed.

o Assumed to be true.
« Error occurs if the condition is not satisfied.
- ex: index out of range

« Implied conditions
- the ADT instance has been created and initialized.
- valid input types.

Postcondition

 Result or state of the ADT instance
after the operation is performed.
» Will be true if the preconditions are met.
- glven: x.pop (1)

— the ith item will be removed if 1 is a valid
index.

Postcondition

« The specitic postcondition depends on
the type of operation:
« Access methods and iterators
- no postcondition.
« Constructors

_ create and initialize ADT instances.

« Mutators
- the ADT instance is modified in a specific way.

Exceptions

« OOP languages raise exceptions when
errors occur.

« An event that can be triggered by the
program.

 Optionally handled during execution.

my list = [12, 50, 5, 17]
print(my listf[4])

« Example:

Traceback (most recent call last):
File "<stdin>", line 1, in <module>
IndexError: list index out of range

Assertions

o Used to state what we assume to be
frue.

assert value != 0, “Walue cannot be zero.”

o If condition is false, a special exception
is automatically raised.

« Combines condition testing and raising an
exception.

 Exception can be caught or let the
program abort.

Evaluating a Data Structure

o Evaluate the data structure based on
certain criteria.

o Does the data structure:

o provide for the storage requirements of
the ADT?

. provide the necessary functionality to
fully implement the ADT?

o lend itself to an efficient implementation
of the operations?

Selecting a Data Structure

« Multiple data structures may be
suitable for a given ADT.

« Select the best possible based on the
context in which the ADT will be used.

« Common for language libraries to provide
multiple implementations of a single ADT.

Build a Bag

Think of this ADT like a shopping cart. Items can be added to it.
Items can also be removed from it. However, there is no specific
order to them.

Operations:

*add: which adds an item to the bag

‘remove: which removes an item from the bag

contains: which checks if an item is in the bag

eiterator: which traverses over the items in the bag one at a time

def imnit (self):
e Create an empty Bag ™7W

def add({self , item) :
rrn Adds an item to the bag. What if it does not £itg? »ww

def remove (self , item) :
ren remowves an item from the bag and returns it.
What to do if its not in there ? return Hone ? Exception ? ""¢W

pass

def contains (self , item) :
neR checks if an item i=s in the bag , returns True or False """

pass

def iterator ([self):
mRr returns an iterator for the bag """

