
Abstract Data Type

Consider the examples …

• The Date class we saw in CSCI 203

– d = Date()

– tomorrow = d.nextDay() gives a new date

– d.is_week_day() gives True of False

• A GradeBook class

– b = GradeBook(student_list, course_list)

– print(b.get_grade(‘Sam Brown’, ‘CSCI 204’))

What’s in common?

• In both cases, we (the application program)
just wanted to use the pre-built class (Date or
GradeBook).

• We don’t care how Date or GradeBook was
implemented.

• We are not supposed to visit or change the
implementation of Date or GradeBook
classes.

• Using ADT makes our lives much easier!
• We don’t need to re-invent the wheels!

Abstract Data Type

 An abstract data type (ADT) is a collection of
data and a set of operations on the data.

 An ADT has the following features.

 Information Hiding: It hides implementation
details from the users. That is, it presents what
the ADT does, not how it does.

 It provides an interface that other programs can
use to access the functionality of the ADT.

Information Hiding

 ADTs can be viewed as black boxes:

 functionality is provided through an interface.

 Matrix in the coming lab!

 implementation details are hidden inside the
box.

Types of Operations

 ADT operations can be grouped into
four categories:

 constructors – creates it

 accessors – gets information

 mutators – changes information

 iterators – navigates through it

• Date example

• Counter example

• Inventory example

• You will be working on Matrix in the
coming lab

What does information
hiding look like?

Using the ADT

 We can use the ADT without knowing
how it's implemented.

 Reinforces the use of abstraction:

 by focusing on what functionality is
provided

 instead of how that functionality is
implemented.

Defining Operations

 The ADT definition should specify:

 required inputs and resulting outputs.

 state of the ADT instance before and after
the operation is performed.

Preconditions

 Condition or state of the ADT instance
and data inputs before the operation is
performed.

 Assumed to be true.

 Error occurs if the condition is not satisfied.
 ex: index out of range

 Implied conditions
 the ADT instance has been created and initialized.

 valid input types.

Postcondition

 Result or state of the ADT instance
after the operation is performed.

 Will be true if the preconditions are met.
 given: x.pop(i)

 the ith item will be removed if i is a valid
index.

Postcondition

 The specific postcondition depends on
the type of operation:

 Access methods and iterators

 no postcondition.

 Constructors

 create and initialize ADT instances.

 Mutators

 the ADT instance is modified in a specific way.

Exceptions

 OOP languages raise exceptions when
errors occur.

 An event that can be triggered by the
program.

 Optionally handled during execution.

 Example:

my_list = [12, 50, 5, 17]

print(my_list[4])

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

IndexError: list index out of range

Assertions

 Used to state what we assume to be
true.

 If condition is false, a special exception
is automatically raised.
 Combines condition testing and raising an

exception.

 Exception can be caught or let the
program abort.

assert value != 0, “Value cannot be zero.”

Evaluating a Data Structure

 Evaluate the data structure based on
certain criteria.

 Does the data structure:
 provide for the storage requirements of

the ADT?

 provide the necessary functionality to
fully implement the ADT?

 lend itself to an efficient implementation
of the operations?

Selecting a Data Structure

 Multiple data structures may be
suitable for a given ADT.

 Select the best possible based on the
context in which the ADT will be used.

 Common for language libraries to provide
multiple implementations of a single ADT.

Build a Bag

Think of this ADT like a shopping cart. Items can be added to it.
Items can also be removed from it. However, there is no specific
order to them.

Operations:
•add: which adds an item to the bag
•remove: which removes an item from the bag
•contains: which checks if an item is in the bag
•iterator: which traverses over the items in the bag one at a time

