Quicksort

Revised based on textbook author’s notes.

Quick Sort

« Uses a divide and conquer strategy to sort the
keys stored in a sequence.

« Partitions the sequence by dividing it into two
segments based on a pivot key.

o Uses virtual subsequences without the need for
temporary storage.

o Quick sort is a recursive algorithm.

Quick Sort — Description

o Select the first key as the pivot (p)

« Partition the sequence into segments L and G.
o L contains all keys less than p
o G contains all keys greater than or equal to p.

o Recursively apply the same operationon L & G.
o Continues until the sequence contains 0 or 1 key.

o Merge the pivot and two segments back
together.

Quick Sort — Divide

Quick Sort — Merge

Quick Sort — Implementation

« An efficient solution can be designed.

def gquickSort (theSeqg):
n = len(theSeqg)
recQuickSort (theSeqg, 0, n-1)

def recQuickSort(theSeqg, first, last):

if first >= last
return
else
Partition the sequence and obtain the pivot position.
pos = partitionSeqg(theSeq, first, last)

Repeat the process on the two subsequences.
recQuickSort (theSeq, first, pos - 1)
recQuickSort(theSeqg, pos + 1, last)

Quick Sort — Partition

o The partitioning step can be done without
having to use temporary storage.

o Rearranges the keys within the sequence structure.

first

< pivot > pivot

poS

last

o The pivot will be in its correct position within the
seguence.

o Position of the pivot indicates the position where the
split occurred.

Quick Sort — Partition

o For illustration, we step through the first

complete partitioning.
o Pivot value is the first key in the segment.

o Two markers (lLeft and right) are initialized.

first

last

23]

51)

18]

4]

31)

8

B

o The markers will be shifted left and right until they

left
—

cross each other.

o

Quick Sort — Partition

o« The 1eft marker is shifted right until a key
value larger than the pivot is found.

sjue)Lajeils)

left right

« The right marker is then shifted left until a key
value less than the pivot is found.

|- ajoaa: e

left right

10

Quick Sort — Partition

« The two keys at the positions of the 1eft and

right markers are swapped.

8

)

left

igh

Quick Sort — Partition

« The two markers are again shifted starting where
they left off.

sjue)aje)(22) 1)

pro—
(&)
N—

4

—

= i
T

0

o

}

EE@EEEER

a

=)

left right

12

Quick Sort — Partition

o After the markers are shifted, the corresponding
keys are swapped as before.

el
@~ o aeE
IefM ht

sl jbe)s ez e)

13

Quick Sort — Partition

« The shifting and swapping continues until the

two markers cross each other,

8

[4]|(18]

51]

D

g

8

L4 J|e)

51)

23)

right left

Quick Sort — Partition

o« When the two markers cross, the right marker
indicates the final position of the pivot value.

o The pivot value and the value at the right marker have
to be swapped.

N\
@ (18])|(51]|(31]|(23| 13]
N

(18])|(51]|(31]|(23]|(3]

Quick Sort — Partition

def partitionSeqg(theSeqg, first, last):
pivot = theSeqg[first]
left = first + 1
right = last
while left <= right

while left < right and theSeqg[left] < pivot
left += 1

while right >= left and theSeqg[right] >= pivot
right -= 1

if left < right
tmp = theSeqglleft]

theSeqg[left] = theSeqg[right]
theSeg[right] = tmp

if right != first
theSeqg[first] = theSeqg[right]
theSeg[right] = pivot

return right

Pivot Key

o We are not limited to selecting the first key
within the sequence as the pivot.
o Using the first or last key is a poor choice in practice.
o Choosing a key near the middle is a better choice.

Quick Sort — Efficiency

« The quick sort algorithm:
« has a worst case time of O(n?)
« but an average case time of O(n log n)

« It does not require additional storage (in-place).

« Commonly used in language libraries.
« Earlier versions of Python used quick sort.

o Current versions use a hybrid that combines the
insertion and merge sort algorithms.

