
Quicksort
Revised based on textbook author’s notes.

2

Quick Sort

 Uses a divide and conquer strategy to sort the
keys stored in a sequence.
 Partitions the sequence by dividing it into two

segments based on a pivot key.

 Uses virtual subsequences without the need for
temporary storage.

 Quick sort is a recursive algorithm.

3

Quick Sort – Description

 Select the first key as the pivot (p)

 Partition the sequence into segments L and G.
 L contains all keys less than p

 G contains all keys greater than or equal to p.

 Recursively apply the same operation on L & G.
 Continues until the sequence contains 0 or 1 key.

 Merge the pivot and two segments back
together.

4

Quick Sort – Divide

5

Quick Sort – Merge

6

Quick Sort – Implementation

 An efficient solution can be designed.
def quickSort(theSeq):

n = len(theSeq)

recQuickSort(theSeq, 0, n-1)

def recQuickSort(theSeq, first, last):

if first >= last :

return

else :

Partition the sequence and obtain the pivot position.

pos = partitionSeq(theSeq, first, last)

Repeat the process on the two subsequences.

recQuickSort(theSeq, first, pos - 1)

recQuickSort(theSeq, pos + 1, last)

7

Quick Sort – Partition

 The partitioning step can be done without
having to use temporary storage.
 Rearranges the keys within the sequence structure.

 The pivot will be in its correct position within the
sequence.

 Position of the pivot indicates the position where the
split occurred.

8

Quick Sort – Partition

 For illustration, we step through the first
complete partitioning.
 Pivot value is the first key in the segment.

 Two markers (left and right) are initialized.

 The markers will be shifted left and right until they
cross each other.

9

Quick Sort – Partition

 The left marker is shifted right until a key
value larger than the pivot is found.

 The right marker is then shifted left until a key
value less than the pivot is found.

10

Quick Sort – Partition

 The two keys at the positions of the left and
right markers are swapped.

11

Quick Sort – Partition

 The two markers are again shifted starting where
they left off.

12

Quick Sort – Partition

 After the markers are shifted, the corresponding
keys are swapped as before.

13

Quick Sort – Partition

 The shifting and swapping continues until the
two markers cross each other.

14

Quick Sort – Partition

 When the two markers cross, the right marker
indicates the final position of the pivot value.
 The pivot value and the value at the right marker have

to be swapped.

15

Quick Sort – Partition
def partitionSeq(theSeq, first, last):

pivot = theSeq[first]

left = first + 1

right = last

while left <= right :

while left < right and theSeq[left] < pivot :

left += 1

while right >= left and theSeq[right] >= pivot :

right -= 1

if left < right :

tmp = theSeq[left]

theSeq[left] = theSeq[right]

theSeq[right] = tmp

if right != first :

theSeq[first] = theSeq[right]

theSeq[right] = pivot

return right

16

Pivot Key

 We are not limited to selecting the first key
within the sequence as the pivot.
 Using the first or last key is a poor choice in practice.

 Choosing a key near the middle is a better choice.

17

Quick Sort – Efficiency

 The quick sort algorithm:
 has a worst case time of O(n2)

 but an average case time of O(n log n)

 It does not require additional storage (in-place).

 Commonly used in language libraries.
 Earlier versions of Python used quick sort.

 Current versions use a hybrid that combines the
insertion and merge sort algorithms.

