

Homework 1 Due 2016-09-05

(2pt) Problem 1

What are these sets? Write them using braces, commas, and numerals only.

- 1. $(\{1,3,5\} \cup \{3,1\}) \cap \{3,5,7\}$
- 2. \bigcup {3}, {3,5}, \bigcap {5,7}, {7,9}} }
- 3. $(\{1,2,5\}-\{5,7,9\})\cup(\{5,7,9\}-\{1,2,5\})$
- 4. $2^{\{7,8,9\}} 2^{\{7,9\}}$
- 5. 2⁰

(2pt) Problem 2

What are these sets? Write them using braces, parentheses, commas, and numerals only.

- 1. $\{1\} \times \{1,2\} \times \{1,2,3\}$
- 2. $\emptyset \times \{1, 2\}$
- 3. $2^{\{1,2\}} \times \{1,2\}$

(2pt) Problem 3

Let $R = \{(a,b), (a,c), (c,d), (a,a), (b,a)\}$. What is $R \circ R$, the composition of R with itself? What is R^{-1} , the inverse of R? Is $R, R \circ R$, or R^{-1} a function?

(2pt) Problem 4

Let $f : A \to B$. Let R_f be the binary relation on A defined as

$$xR_f y$$
 if and only if $f(x) = f(y)$.

Prove that R_f is an equivalence relation.

(2pt) Problem 5

Let *A* be a non-empty finite set and let $f : A \to A$. We have seen the definition of a *cycle* in a relation *R*. The function *f* can be seen as its corresponding relation R_f . Prove that R_f contains a cycle. (*Hint: your proof can be the description of an algorithm building such a cycle, together with a clear explanation of the algorithm's correctness.*)