Theory of Computation
 CSCI 341, Fall 2016

Homework 1
 Due 2016-09-05

(2pt) Problem 1

What are these sets? Write them using braces, commas, and numerals only.

1. $(\{1,3,5\} \cup\{3,1\}) \cap\{3,5,7\}$
2. $\cup\{\{3\},\{3,5\}, \cap\{\{5,7\},\{7,9\}\}\}$
3. $(\{1,2,5\}-\{5,7,9\}) \cup(\{5,7,9\}-\{1,2,5\})$
4. $2^{\{7,8,9\}}-2^{\{7,9\}}$
5. 2^{\square}

(2pt) Problem 2

What are these sets? Write them using braces, parentheses, commas, and numerals only.

1. $\{1\} \times\{1,2\} \times\{1,2,3\}$
2. $\emptyset \times\{1,2\}$
3. $2^{\{1,2\}} \times\{1,2\}$

(2pt) Problem 3

Let $R=\{(a, b),(a, c),(c, d),(a, a),(b, a)\}$. What is $R \circ R$, the composition of R with itself? What is R^{-1}, the inverse of R ? Is $R, R \circ R$, or R^{-1} a function?

(2pt) Problem 4

Let $f: A \rightarrow B$. Let R_{f} be the binary relation on A defined as

$$
x R_{f} y \text { if and only if } f(x)=f(y) .
$$

Prove that R_{f} is an equivalence relation.

(2pt) Problem 5

Let A be a non-empty finite set and let $f: A \rightarrow A$. We have seen the definition of a cycle in a relation R. The function f can be seen as its corresponding relation R_{f}. Prove that R_{f} contains a cycle. (Hint: your proof can be the description of an algorithm building such a cycle, together with a clear explanation of the algorithm's correctness.)

