Theory of Computation
 CSCI 341, Fall 2016

Homework 1

Due 2016-09-05

(2pt) Problem 1

What are these sets? Write them using braces, commas, and numerals only.

1. $(\{1,3,5\} \cup\{3,1\}) \cap\{3,5,7\}$
2. $\cup\{\{3\},\{3,5\}, \cap\{\{5,7\},\{7,9\}\}\}$
3. $(\{1,2,5\}-\{5,7,9\}) \cup(\{5,7,9\}-\{1,2,5\})$
4. $2^{\{7,8,9\}}-2^{\{7,9\}}$
5. 2^{\square}

SOLUTION

(a) $(\{1,3,5\} \cup\{3,1\}) \cap\{3,5,7\}=\{1,3,5\} \cap\{3,5,7\}=\{3,5\}$
(b) $\bigcup\{\{3\},\{3,5\}, \cap\{\{5,7\},\{7,9\}\}\}=\bigcup\{\{3\},\{3,5\},\{7\}\}=\{3,5,7\}$
(c) $(\{1,2,5\}-\{5,7,9\}) \cup(\{5,7,9\}-\{1,2,5\})=\{1,2\} \cup\{7,9\}=\{1,2,7,9\}$
(d) $2^{\{7,8,9\}}-2^{\{7,9\}}=\{\emptyset,\{7\},\{8\},\{9\},\{7,8\},\{7,9\},\{8,9\},\{7,8,9\}\}-\{0,\{7\},\{9\},\{7,9\}\}=$ $\{\{8\},\{7,8\},\{8,9\},\{7,8,9\}\}$
(e) $2^{\emptyset}=\{\emptyset\}$

(2pt) Problem 2

What are these sets? Write them using braces, parentheses, commas, and numerals only.

1. $\{1\} \times\{1,2\} \times\{1,2,3\}$
2. $\emptyset \times\{1,2\}$
3. $2^{\{1,2\}} \times\{1,2\}$

SOLUTION

(a) $\{1\} \times\{1,2\} \times\{1,2,3\}=\{(1,1,1),(1,1,2),(1,1,3),(1,2,1),(1,2,2),(1,2,3)\}$
(b) $\emptyset \times\{1,2\}=\emptyset$
(c) $2^{\{1,2\}} \times\{1,2\}=\{\emptyset,\{1\},\{2\},\{1,2\}\} \times\{1,2\}=$ $\{(\emptyset, 1),(\emptyset, 2),(\{1\}, 1),(\{1\}, 2),(\{2\}, 1),(\{2\}, 2),(\{1,2\}, 1),(\{1,2\}, 2)\}$

(2pt) Problem 3

Let $R=\{(a, b),(a, c),(c, d),(a, a),(b, a)\}$. What is $R \circ R$, the composition of R with itself? What is R^{-1}, the inverse of R ? Is $R, R \circ R$, or R^{-1} a function?

SOLUTION
We consider the relation $R=\{(a, b),(a, c),(c, d),(a, a),(b, a)\}$. In this case the relation $R \circ R$ and R^{-1} are:

$$
\begin{gathered}
R \circ R=\{(a, a),(a, b),(a, c),(a, d),(b, a),(b, b),(b, c)\} \\
R^{-1}=\{(b, a),(c, a),(d, c),(a, a),(a, b)\}
\end{gathered}
$$

R is not a function because (a, a) and (a, b) belongs to R.
Similarly, R^{-1} and $R \circ R$ are not functions. (Another reason why R and $R \circ R$ are not functions is because d is not related to any element.)

(2pt) Problem 4

Let $f: A \rightarrow B$. Let R_{f} be the binary relation on A defined as

$$
x R_{f} y \text { if and only if } f(x)=f(y)
$$

Prove that R_{f} is an equivalence relation.

SOLUTION

We have to prove that R_{f} is reflexive, symmetric and transitive.
This is simply because the equality $=$ is itself an equivalence relation.
More precisely,

- Let $a \in A$, we have $f(a)=f(a)$ (by reflexivity of $=$), so $(a, a) \in R_{f}$. We conclude that R_{f} is reflexive.
- Let $(a, b) \in R_{f}$, by definition of R_{f} we have $f(a)=f(b)$, then $f(b)=f(a)$ (by symmetry of $=$), so $(b, a) \in R_{f}$. We conclude that R_{f} is symmetric.
- Let $(a, b) \in R_{f}$ and $(b, c) \in R_{f}$ then by definition of R_{f} we have $f(a)=f(b)$ and $f(b)=f(c)$, and then $f(a)=f(c)$ (by transitivity of $=$), and then $(a, c) \in R_{f}$. We conclude that R_{f} is transitive.

The relation R_{f} is an equivalence relation because it is reflexive, symmetric and transitive.

(2pt) Problem 5

Let A be a non-empty finite set and let $f: A \rightarrow A$. We have seen the definition of a cycle in a relation R. The function f can be seen as its corresponding relation R_{f}. Prove that R_{f} contains a cycle. (Hint: your proof can be the description of an algorithm building such a cycle, together with a clear explanation of the algorithm's correctness.)

SOLUTION

Let A be a finite set. The cardinality of A is $|A|$. Let $f: A \rightarrow A$ be any function from A to A, we define first the function f^{n} for $n \in \mathbb{N}$ as $f^{0}=i d$ and $f^{n}=f \circ f^{n}$, with id being the identity function $f(x)=x$. For any number $n \in \mathbb{N}$ and for any $a \in A$, we define the following tuple of length $n+1$:

$$
l=\left(f^{0}(a), f^{1}(a), \cdots, f^{n}(a)\right)
$$

The tuple l is a path according to the definition of f^{i} with $i \leq n$.
Let us fix n being strictly greater than $|A|$. The corresponding path l contains a number of elements greater than $|A|$, then there are necessarily two identical elements. Let us identify these elements by their positions i and j corresponding to the exponents of f, thus we have $f^{i}(a)=f^{j}(a)$. We have found a path $l_{1}=\left(f^{i}(a), \cdots, f^{j-1}(a)\right)$, this path can be seen as a loop (which is different from a cycle, since duplicates might occur). We still have to prove that this loop contains a cycle. You can prove it in two different ways:

Proof. 1. Construction of a cycle. Let S be the following set $S=\left\{(m, n): i \leq m<n \leq j\right.$, and $f^{m}(a)=$ $\left.f^{n}(a)\right\}$. The set S is finite and S defines the set of indices describing loops included in l_{1}. Let d be the minimum of the difference $n-m$ whenever $(m, n) \in S$, that is written $d=\operatorname{Min}\{n-m:(m, n) \in S\}$. The number d exists because is S is finite. Let S^{\prime} be the set $\{(m, n):(m, n) \in S$ and $n-m=d\}, S^{\prime}$ defines the set of indices of the smallest loops included in l_{1}. And finally let $(p, q) \in S^{\prime}$ be the pair such that p is the least number in pairs of S^{\prime}. By construction, $\left(f^{p}(a), \cdots, f^{q-1}(a)\right)$ is a loop containing no loop inside, so it is a cycle.

Proof. 2. Proof by strong induction that

$$
P(n) \text { : any loop of size } n \text { contains a cycle. }
$$

We have to prove the base case and the inductive case.

- (base case) a loop of size 1 is a cycle.
- (inductive case) Assume the induction hypothesis H : any loop of size less than n contains a cycle. We have to prove that any loop of size $n+1$ contains a cycle. Let L be a loop of size $n+1, L=$ $\left(x_{1}, x_{2}, \cdots, x_{n+1}\right)$. There are two cases:
- all the elements in L are distinct, by definition L is a cycle.
- two elements in L are equal, assume they are x_{i} and x_{j}, we have $x_{i}=x_{j}$. In this case (x_{i}, \cdots, x_{j-1}) is a sub-loop of L of size strictly less than $n+1$. We can apply the induction hypothesis H, we conclude that (x_{i}, \cdots, x_{j-1}) contains a cycle and finally L contains a cycle.

We conclude that in any case L contains a cycle.
Since the base case and the induction case are true we conclude that $P(n)$ is true for all $n \geq 1$.

