
Theory of Computation
CSCI 341, Fall 2016

Homework 1
Due 2016-09-05

(2pt) Problem 1

What are these sets? Write them using braces, commas, and numerals only.

1. ({1,3,5}∪{3,1})∩{3,5,7}

2.
⋃
{ {3},{3,5},

⋂
{{5,7},{7,9}} }

3. ({1,2,5}−{5,7,9})∪ ({5,7,9}−{1,2,5})

4. 2{7,8,9}−2{7,9}

5. 2 /0

SOLUTION

(a) ({1,3,5}∪{3,1})∩{3,5,7}= {1,3,5}∩{3,5,7}= {3,5}

(b)
⋃
{{3},{3,5},

⋂
{{5,7},{7,9}}}=

⋃
{{3},{3,5},{7}}= {3,5,7}

(c) ({1,2,5}−{5,7,9})∪ ({5,7,9}−{1,2,5}) = {1,2}∪{7,9}= {1,2,7,9}

(d) 2{7,8,9}−2{7,9} = { /0,{7},{8},{9},{7,8},{7,9},{8,9},{7,8,9}}−{ /0,{7},{9},{7,9}}=
{{8},{7,8},{8,9},{7,8,9}}

(e) 2 /0 = { /0}

(2pt) Problem 2

What are these sets? Write them using braces, parentheses, commas, and numerals only.

1. {1}×{1,2}×{1,2,3}

2. /0×{1,2}

3. 2{1,2}×{1,2}

SOLUTION

(a) {1}×{1,2}×{1,2,3}= {(1,1,1),(1,1,2),(1,1,3),(1,2,1),(1,2,2),(1,2,3)}

(b) /0×{1,2}= /0

(c) 2{1,2}×{1,2}= { /0,{1},{2},{1,2}}×{1,2}=
{( /0,1),( /0,2),({1},1),({1},2),({2},1),({2},2),({1,2},1),({1,2},2)}
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(2pt) Problem 3

Let R = {(a,b),(a,c),(c,d),(a,a),(b,a)}. What is R◦R, the composition of R with itself? What is R−1, the
inverse of R? Is R, R◦R, or R−1 a function?

SOLUTION

We consider the relation R = {(a,b),(a,c),(c,d),(a,a),(b,a)}. In this case the relation R ◦R and R−1

are:

R◦R = {(a,a),(a,b),(a,c),(a,d),(b,a),(b,b),(b,c)}

R−1 = {(b,a),(c,a),(d,c),(a,a),(a,b)}

R is not a function because (a,a) and (a,b) belongs to R.
Similarly, R−1 and R◦R are not functions. (Another reason why R and R◦R are not functions is because d
is not related to any element.)

(2pt) Problem 4

Let f : A→ B. Let R f be the binary relation on A defined as

xR f y if and only if f (x) = f (y).

Prove that R f is an equivalence relation.
SOLUTION

We have to prove that R f is reflexive, symmetric and transitive.
This is simply because the equality = is itself an equivalence relation.

More precisely,

• Let a ∈ A, we have f (a) = f (a) (by reflexivity of =), so (a,a) ∈ R f . We conclude that R f is reflexive.

• Let (a,b) ∈ R f , by definition of R f we have f (a) = f (b), then f (b) = f (a) (by symmetry of =), so
(b,a) ∈ R f . We conclude that R f is symmetric.

• Let (a,b) ∈ R f and (b,c) ∈ R f then by definition of R f we have f (a) = f (b) and f (b) = f (c), and
then f (a) = f (c) (by transitivity of =), and then (a,c) ∈ R f . We conclude that R f is transitive.

The relation R f is an equivalence relation because it is reflexive, symmetric and transitive.

(2pt) Problem 5

Let A be a non-empty finite set and let f : A→ A. We have seen the definition of a cycle in a relation R.
The function f can be seen as its corresponding relation R f . Prove that R f contains a cycle. (Hint: your
proof can be the description of an algorithm building such a cycle, together with a clear explanation of the
algorithm’s correctness.)

SOLUTION
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Let A be a finite set. The cardinality of A is |A|. Let f : A→ A be any function from A to A, we define
first the function f n for n ∈ N as f 0 = id and f n = f ◦ f n, with id being the identity function f (x) = x. For
any number n ∈ N and for any a ∈ A, we define the following tuple of length n+1:

l = ( f 0(a), f 1(a), · · · , f n(a))

The tuple l is a path according to the definition of f i with i≤ n.
Let us fix n being strictly greater than |A|. The corresponding path l contains a number of elements

greater than |A|, then there are necessarily two identical elements. Let us identify these elements by their
positions i and j corresponding to the exponents of f , thus we have f i(a) = f j(a). We have found a path
l1 = ( f i(a), · · · , f j−1(a)), this path can be seen as a loop (which is different from a cycle, since duplicates
might occur). We still have to prove that this loop contains a cycle. You can prove it in two different ways:

Proof. 1. Construction of a cycle. Let S be the following set S = {(m,n) : i ≤ m < n ≤ j, and f m(a) =
f n(a)}. The set S is finite and S defines the set of indices describing loops included in l1. Let d be the
minimum of the difference n−m whenever (m,n) ∈ S, that is written d = Min{n−m : (m,n) ∈ S}. The
number d exists because is S is finite. Let S′ be the set {(m,n) : (m,n) ∈ S and n−m = d}, S′ defines the set
of indices of the smallest loops included in l1. And finally let (p,q) ∈ S′ be the pair such that p is the least
number in pairs of S′. By construction, ( f p(a), · · · , f q−1(a)) is a loop containing no loop inside, so it is a
cycle.

Proof. 2. Proof by strong induction that

P(n): any loop of size n contains a cycle.

We have to prove the base case and the inductive case.

• (base case) a loop of size 1 is a cycle.

• (inductive case) Assume the induction hypothesis H : any loop of size less than n contains a cycle.
We have to prove that any loop of size n+ 1 contains a cycle. Let L be a loop of size n+ 1, L =
(x1,x2, · · · ,xn+1). There are two cases:

– all the elements in L are distinct, by definition L is a cycle.

– two elements in L are equal, assume they are xi and x j, we have xi = x j. In this case (xi, · · · ,x j−1)
is a sub-loop of L of size strictly less than n+1. We can apply the induction hypothesis H, we
conclude that (xi, · · · ,x j−1) contains a cycle and finally L contains a cycle.

We conclude that in any case L contains a cycle.

Since the base case and the induction case are true we conclude that P(n) is true for all n≥ 1.
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