

Theory of Computation CSCI 341, Fall 2016

Homework 1 Due 2016-09-05

(2pt) Problem 1

What are these sets? Write them using braces, commas, and numerals only.

- 1. $(\{1,3,5\} \cup \{3,1\}) \cap \{3,5,7\}$
- 2. \bigcup { {3}, {3,5}, \bigcap {{5,7}, {7,9}} }
- 3. $(\{1,2,5\} \{5,7,9\}) \cup (\{5,7,9\} \{1,2,5\})$
- 4. $2^{\{7,8,9\}} 2^{\{7,9\}}$

5. 2⁰

SOLUTION

- (a) $(\{1,3,5\} \cup \{3,1\}) \cap \{3,5,7\} = \{1,3,5\} \cap \{3,5,7\} = \{3,5\}$
- (b) \bigcup {{3},{3,5}, \bigcap {{5,7},{7,9}}} = \bigcup {{3},{3,5},{7}} = {3,5,7}
- (c) $(\{1,2,5\}-\{5,7,9\})\cup(\{5,7,9\}-\{1,2,5\})=\{1,2\}\cup\{7,9\}=\{1,2,7,9\}$
- (d) $2^{\{7,8,9\}} 2^{\{7,9\}} = \{\emptyset, \{7\}, \{8\}, \{9\}, \{7,8\}, \{7,9\}, \{8,9\}, \{7,8,9\}\} \{\emptyset, \{7\}, \{9\}, \{7,9\}\} = \{\{8\}, \{7,8\}, \{8,9\}, \{7,8,9\}\}$
- (e) $2^{\emptyset} = \{\emptyset\}$

(2pt) Problem 2

What are these sets? Write them using braces, parentheses, commas, and numerals only.

- 1. $\{1\} \times \{1,2\} \times \{1,2,3\}$
- 2. $\emptyset \times \{1, 2\}$
- 3. $2^{\{1,2\}} \times \{1,2\}$

SOLUTION

(a)
$$\{1\} \times \{1,2\} \times \{1,2,3\} = \{(1,1,1), (1,1,2), (1,1,3), (1,2,1), (1,2,2), (1,2,3)\}$$

- (b) $\emptyset \times \{1,2\} = \emptyset$
- (c) $2^{\{1,2\}} \times \{1,2\} = \{\emptyset, \{1\}, \{2\}, \{1,2\}\} \times \{1,2\} = \{(\emptyset,1), (\emptyset,2), (\{1\},1), (\{1\},2), (\{2\},1), (\{2\},2), (\{1,2\},1), (\{1,2\},2)\}$

(2pt) Problem 3

Let $R = \{(a,b), (a,c), (c,d), (a,a), (b,a)\}$. What is $R \circ R$, the composition of R with itself? What is R^{-1} , the inverse of R? Is R, $R \circ R$, or R^{-1} a function? **SOLUTION**

We consider the relation $R = \{(a,b), (a,c), (c,d), (a,a), (b,a)\}$. In this case the relation $R \circ R$ and R^{-1} are:

$$R \circ R = \{(a,a), (a,b), (a,c), (a,d), (b,a), (b,b), (b,c)\}$$
$$R^{-1} = \{(b,a), (c,a), (d,c), (a,a), (a,b)\}$$

R is not a function because (a, a) and (a, b) belongs to *R*. Similarly, R^{-1} and $R \circ R$ are not functions. (Another reason why R and $R \circ R$ are not functions is because d is not related to any element.)

(2pt) Problem 4

Let $f : A \to B$. Let R_f be the binary relation on A defined as

$$xR_f y$$
 if and only if $f(x) = f(y)$.

Prove that R_f is an equivalence relation.

SOLUTION

We have to prove that R_f is reflexive, symmetric and transitive. This is simply because the equality = is itself an equivalence relation.

More precisely,

- Let $a \in A$, we have f(a) = f(a) (by reflexivity of =), so $(a, a) \in R_f$. We conclude that R_f is reflexive.
- Let $(a,b) \in R_f$, by definition of R_f we have f(a) = f(b), then f(b) = f(a) (by symmetry of =), so $(b,a) \in R_f$. We conclude that R_f is symmetric.
- Let $(a,b) \in R_f$ and $(b,c) \in R_f$ then by definition of R_f we have f(a) = f(b) and f(b) = f(c), and then f(a) = f(c) (by transitivity of =), and then $(a, c) \in R_f$. We conclude that R_f is transitive.

The relation R_f is an equivalence relation because it is reflexive, symmetric and transitive.

(2pt) Problem 5

Let A be a non-empty finite set and let $f : A \to A$. We have seen the definition of a *cycle* in a relation R. The function f can be seen as its corresponding relation R_f . Prove that R_f contains a cycle. (*Hint: your* proof can be the description of an algorithm building such a cycle, together with a clear explanation of the algorithm's correctness.)

SOLUTION

Let *A* be a finite set. The cardinality of *A* is |A|. Let $f : A \to A$ be any function from *A* to *A*, we define first the function f^n for $n \in \mathbb{N}$ as $f^0 = id$ and $f^n = f \circ f^n$, with *id* being the identity function f(x) = x. For any number $n \in \mathbb{N}$ and for any $a \in A$, we define the following tuple of length n + 1:

$$l = (f^0(a), f^1(a), \cdots, f^n(a))$$

The tuple *l* is a path according to the definition of f^i with $i \le n$.

Let us fix *n* being strictly greater than |A|. The corresponding path *l* contains a number of elements greater than |A|, then there are necessarily two identical elements. Let us identify these elements by their positions *i* and *j* corresponding to the exponents of *f*, thus we have $f^i(a) = f^j(a)$. We have found a path $l_1 = (f^i(a), \dots, f^{j-1}(a))$, this path can be seen as a *loop* (which is different from a *cycle*, since duplicates might occur). We still have to prove that this loop contains a cycle. You can prove it in two different ways:

Proof. 1. Construction of a cycle. Let *S* be the following set $S = \{(m,n) : i \le m < n \le j, \text{ and } f^m(a) = f^n(a)\}$. The set *S* is finite and *S* defines the set of indices describing loops included in l_1 . Let *d* be the minimum of the difference n - m whenever $(m,n) \in S$, that is written $d = Min\{n - m : (m,n) \in S\}$. The number *d* exists because is *S* is finite. Let *S'* be the set $\{(m,n) : (m,n) \in S \text{ and } n - m = d\}$, *S'* defines the set of indices of the smallest loops included in l_1 . And finally let $(p,q) \in S'$ be the pair such that *p* is the least number in pairs of *S'*. By construction, $(f^p(a), \dots, f^{q-1}(a))$ is a loop containing no loop inside, so it is a cycle.

Proof. 2. Proof by strong induction that

P(n): any loop of size *n* contains a cycle.

We have to prove the base case and the inductive case.

- (base case) a loop of size 1 is a cycle.
- (inductive case) Assume the induction hypothesis H: any loop of size less than n contains a cycle. We have to prove that any loop of size n + 1 contains a cycle. Let L be a loop of size n + 1, $L = (x_1, x_2, \dots, x_{n+1})$. There are two cases:
 - all the elements in L are distinct, by definition L is a cycle.
 - two elements in *L* are equal, assume they are x_i and x_j , we have $x_i = x_j$. In this case (x_i, \dots, x_{j-1}) is a sub-loop of *L* of size strictly less than n + 1. We can apply the induction hypothesis *H*, we conclude that (x_i, \dots, x_{j-1}) contains a cycle and finally *L* contains a cycle.

We conclude that in any case L contains a cycle.

Since the base case and the induction case are true we conclude that P(n) is true for all $n \ge 1$.