Theory of Computation
 CSCI 341, Fall 2016

Homework 2
 Due 2016-09-23

(2pt) Problem 1

Following the spirit of the algorithm converting regular expressions to NFAs, propose an extension of this algorithm to convert regular expressions of the form $E=E_{1}^{+}$to NFAs. Draw the conversion and define it formally, by assuming E_{1} is recognized by an NFA $\left(Q_{1}, \Sigma, \Delta_{1}, s_{1}, F_{1}\right)$, define an NFA $N=(Q, \Sigma, \Delta, s, F)$ recognizing E_{1}^{+}.

SOLUTION Let $M_{1}=\left(Q_{1}, \Sigma, \Delta_{1}, s_{1}, F_{1}\right)$ be an NFA recognizing the regexp E_{1}. We define the following NFA M recognizing E_{1}^{+}by defining it as

$$
M=(Q, \Sigma, \Delta, s, F)
$$

with

- $Q=Q_{1}$
- $s=s 1$
- $\Delta=\Delta_{1} \cup\left\{\left(f, \varepsilon, s_{1}\right) \mid f \in F_{1}\right\}$
- $F=F_{1}$

(3pt) Problem 2

Convert the following regular expressions to NFAs using the procedure we saw in class, and then convert the NFAs to DFAs using the other procedure we saw in class.

1. $a^{*}\left(a\left(b^{*}\right)\right) b$
2. $(a \cup b)^{*} b(a a) b$
3. $a\left(b^{+}\right)(a \cup b)^{*}\left(b^{+}\right) a$

(2.5pt) Problem 3

Exercise 4.7 from Sipser, page 211. Maximum credit for a clear and complete proof.
SOLUTION Let B be the set containing all the infinite sequences of booleans. For example, elements of B could be sequence s like:

$$
s=0000000000 \cdots
$$

$$
\begin{gathered}
s=1111111111 \cdots \\
s=01010101 \cdots \\
s=0110001110 \cdots
\end{gathered}
$$

Let us call call $s[i]$ the i-th digit of s.
We want to prove that B is uncountable. Let's prove it by contradiction.
Let us assume that B is countable. It means that there exists an isomorphism $f: \mathbb{N} \rightarrow B$. Let us define a particular sequence d (the diagonal sequence) using the function f.

$$
d[i]=\overline{f(i)[i]}
$$

The function f is an bijection. Therefore, that there exists an integer k such that $f(k)=d$. The contradiction appears when we inspect the value of $d[k]$. There are two possibilities: $d[k]=0$ or $d[k]=1$.

- Suppose $d[k]=0 \Rightarrow \overline{f(k)[k]}=0 \Rightarrow f(k)[k]=1 \Rightarrow d[k]=1$. It's absurd!
- Suppose $d[k]=1 \Rightarrow \overline{f(k)[k]}=1 \Rightarrow f(k)[k]=0 \Rightarrow d[k]=0$. It's absurd!

This is a contradiction! In conclusion, it cannot be true that B is countable.

(2.5pt) Problem 4

Problem 1.32 from Sipser, page 88.

