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Principles of Induction
Abstract

The principle of induction is a fundamental tool for proving the truth of a property for an infinite
set of objects. The first infinite set encountered is the set of natural numbers, we introduce the basic
and strong induction principle on natural numbers. Second we present its generalization to well-founded
sets. The well-founded induction is a fundamental tool for applying induction on various set of objects
arising in computer science. The application of these principles of induction are illustrated by showing
the proof of termination of algorithms.

1 Principle of induction on natural numbers

We assume P(n) being a property depending on n.

Principle induction 1:
If the two following conditions are true

1. (base case) P(0)

2. (induction case) ∀i ∈ N,(P(i)⇒ P(i+1))

then ∀n ∈ N,P(n).

Example 1. For all n≥ 0, the following equality holds:

0+1+ · · ·+n =
n(n+1)

2

Proof. Let P(n) be the statement:

0+1+ · · ·+n =
n(n+1)

2
Let us prove it by induction.

• (base case) 0 = 0(0+1)
2 , so P(0) is true.

• (induction case) Let i ∈N, assuming H: 0+1+ · · ·+ i = i(i+1)
2 , we want to prove that P(i+1) is true.

0+1+ · · ·+ i+(i+1) = (0+1+ · · ·+ i)+(i+1)
= i(i+1)

2 +(i+1) by induction hypothesis H
= i(i+1)

2 + 2(i+1)
2

= (i+2)(i+1)
2

= (i+1)(i+2)
2 by commutativity
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Example 2. Let us define the factorial function as follows:

f act(n) =
{

1 if n≤ 0
n× f act(n−1) otherwise

This definition is indeed a valid definition for a function because it terminates for any input natural
number. In general, a function definition could be wrong if it corresponds to a circular computation with no
termination. This is the reason why it is important to prove the termination of functions defined recursively.

Proposition 1. For all natural number n, f act(n) terminates.

Proof. Let us prove by induction that the following proposition is true, P(n): f act(n) terminates.

• (base case) By definition f act(0) = 0 thus it terminates and P(0) is true.

• (induction case) Let i ∈ N, let us assume the induction hypothesis H : f act(i) terminates. We want to
prove that f (i+1) terminates (also known as P(i+1) is true). We know that i+1 is greater than 0, so
we have f (i+ 1) = i× f (i) by definition of f . Using the induction hypothesis H we know that f (i)
terminates, finally we have that f (i+1) = i× f (i) terminates.

Both the base case and the induction case are true. Consequently, we have proven by induction that for all
natural number n, f (n) terminates.

Sometimes a property parametrized by a number n is true for all numbers except a few intial values.
In this case, the induction principle seen before does not work and we need a variation of this induction
principle.

Principle of induction 2:
Let n0 ∈ N. If the following two conditions are true:

1. (base case) P(n0)

2. (induction case) ∀n, [(n≥ n0)⇒ P(n)]⇒ P(n+1)

then ∀n≥ n0,P(n).

Example 3. This principle of induction is adequate for proving that 2n ≤ n! for any n≥ 4.

2 Principle of strong induction

Sometimes you need the induction hypothesis to be stronger in the sense that not only you need P(i) to be
true for proving P(i+1) but you need all the P( j) to be true for j ≤ i. This variant of induction principle is
called the principle of strong induction:

Principle of strong induction:
Let n0 ∈ N. If the following two conditions are true:
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1. (base case) P(n0)

2. (induction case) ∀i, [∀ j,n0 ≤ j ≤ i⇒ P( j)]⇒ P(i+1)

then ∀n≥ n0,P(n).
Remark that the principle of strong induction allows to start the induction from a specific number n0.

Example 4. Consider the Fibonacci function defined as the following:

f ibo(n) =


0 if n≤ 0
1 if n = 1

f ibo(n−1)+ f ibo(n−2) otherwise

Proposition 2. For all natural number n, f ibo(n) terminates.

Proof. We prove by strong induction on n the following property:

P(n) : f ibo(n) terminates

• (base case) f ibo(0) = 1 so it terminates, and then P(0) is true

• (induction case) Let i ∈ N, let us assume the induction hypothesis H : ∀ j, j ≤ i⇒ P( j). We want to
prove that P(i+1) is true. By case on i+1,

– i+1 = 1, then f ibo(1) = 1, and then it terminates.

– i + 1 > 1, then f ibo(i + 1) = f ibo(i) + f ibo(i− 1), since i and i− 1 are less then i, by the
induction hypothesis H we know that f ibo(i) and f ibo(i−1) terminates, and so f ibo(i+1)

Finally we have proven that P(i+1) is true.

The base case and the induction case are true. We can conclude, using the principle of strong induction that
∀n, f ibo(n) terminates.

3 Principle of Well-founded induction

The principle of induction we have seen are valid for numbers. Its generalisation to arbitrary sets is the topic
of this section. Remark that on numbers the notions involved in the definition of induction is the < relation.
This is where we have to start.

Let ≺ be a binary relation on a set A. The relation ≺ has an infinite descending chain if and only if there
exists an element a0 such that:

· · · ≺ an ≺ an−1 ≺ ·· · ≺ a1 ≺ a0

Definition 1. A relation with no infinite descending chain is called well-founded. A set A with a well-founded
relation is called well-founded.

Remark that the set of natural numbers with the strictly-less-than-equal relation < form a well-founded
set.
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Principle of well-founded induction:
Assuming (A,≺) is a well-founded. If the following proposition holds:

∀a ∈ A, [(∀b ∈ A,b≺ a⇒ P(b))⇒ P(a)]

then ∀a ∈ A,P(a).

Example 5. The Ackermann function is defined recursively as the following:

ack(m,n) =


n+1 if m = 0

ack(m−1,1) if m > 0 and n = 0
ack(m−1,ack(m,n−1)) if m > 0 and n > 0

Proposition 3. The Ackermann function terminates for any pair (m,n).

Proof. Let us define the adequate well-founded relation. Consider the following relation ≺ on N×N:

(a,b)≺ (c,d) iff a < b or a = b and b < c

The relation ≺ is well-founded (convince yourself of that).

Let us prove using the well-founded induction that the Ackermann function terminates for any pair m,n.
Let (m,n) be a pair of natural numbers, let us assume the induction hypothesis

H : ∀(a,b), [(a,b)≺ (m,n)⇒ Ack(a,b) terminates]

We prove by case on (m,n) that Ack(m,n) terminates:

• (m,n) = (0,0), in this case Ack(0,0) = 1 by definition, then it terminates.

• (m,n) = (m,0), with m > 0, then we consider the pair (m− 1,1). We have that (m− 1,1) ≺ (m,n)
then we can use the induction hypothesis H and we have that Ack(m− 1,1) terminates. In this case
Ack(m,n) = Ack(m−1,1) and then it terminates.

• (m,n) is such that m > 0 and n > 0. First, we consider first the pair (m,n−1), we know that (m,n−
1)≺ (m,n), then we can apply the induction hypothesis H and we obtain that Ack(m,n−1) terminates.
Second, we consider the pair (m− 1,Ack(m,n− 1)), we know that (m− 1,Ack(m,n− 1)) ≺ (m,n),
applying again the induction hypothesis H and we obtain the Ack(m−1,Ack(m,n−1)) terminates, in
this case this is equal to Ack(m,n) and then it terminates.

Finally in all cases we have proven the H ⇒ (Ack(m,n)) terminates . We conclude that the Ackermann
function terminates on any pair of natural numbers.

We have seen an example of using the well-founded induction principle on pair of numbers. The same
idea can be applied to many other structures, in particular the computational ones, like trees, graphs, expres-
sions, lists, words. In each case, one has to define first a well-founded relation. For example on trees, it can
be the relation to be a subtree, on expressions it can be the relation to be a subexpression, etc. And then one
can use the well-founded induction principle to prove properties.
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