

Recitation 2 2016-08-30

Exercise 0.7 from Sipser page 26

Exercise 0.8 from Sipser

Exercise 3

let $R \subseteq A \times A$ be a binary relation as defined below. In which cases is *R* a partial order? a total order?

- 1. A = the strictly positive integers; aRb iff b is divisible by a.
- 2. $A = \mathbb{N} \times \mathbb{N}$; (a, b) R(c, d) iff $a \le c$ or $b \le d$.
- 3. $A = \mathbb{N}$; *aRb* iff b = a or b = a + 1.
- 4. *A* is the set of all English words; *aRb* iff *a* is strictly shorter than *b*.
- 5. A is the set of all English words; aRb iff a is the same as b or a occurs more frequently than b in Sipser's book.

Exercise 4

Let R_1 and R_2 be any two partial orders on the same set A. Show that $R_1 \cap R_2$ is a partial order.

Exercise 5

Let *A* be any set, let \mathbb{B} be the set of booleans. We write $A \to \mathbb{B}$ for the set of all functions from *A* to \mathbb{B} . Prove that there exists a bijection between $A \to \mathbb{B}$ and the powerset of *A*, $\mathscr{P}(A)$.