Theory of Computation
 CSCI 341, Fall 2016

Recitation 3

2016-09-05

Exercise $\mathbf{0 . 1 1}$ from Sipser page 27

Exercise 2

Consider the function below. It searches in a binary tree for an element stored at a given key in the tree with root node.

```
# https://en.wikipedia.org/wiki/Binary_search_tree
def search_recursively(key, node):
    if node is None or node.key == key:
        return node
    elif key < node.key:
        return search_recursively(key, node.left)
    else: # key > node.key
        return search_recursively(key, node.right)
```

Define a well-founded relation on binary trees that allows to prove by well-founded induction that the function search_recursively() terminates.

Exercise 3

Prove that the set of all finite subsets of \mathbb{N} is countable. (Hint: find a bijection with \mathbb{N})

Exercise 4

Suppose that we try to prove that the set of all finite subsets of \mathbb{N} is uncountable, by an argument exactly parallel to the proof of the uncountability of $2 \mathbb{N}$. What goes wrong?

