Remember to explain all answers in your solutions. You will not receive credit for merely repeating an answer given here. When an answer is not given below, it is either because the solution is trivial or because disclosure of the answer would give away too much of the solution to the problem.

5.113
a. $R_S = 5 \, k\Omega$
 b. $R_D = 5 \, k\Omega$

5.116
a. $A_{v01} \approx 1 \, V/V; \ R_{out1} = 200 \, \Omega$
 b. $A_{v2} = 7.1 \, V/V; \ R_{in2} = 200 \, \Omega$
 c. $A_v = 3.6 \, V/V$

6.151 $v_o/v_{sig} = 16 \, V/V; \ \ R_{in} = 50 \, \Omega$

6.154
a. $I_E = 1.73 \, mA; \ g_m = 68 \, mA/V; \ r_e = 14.5 \, \Omega; \ r_\pi = 1.46 \, k\Omega$
 b. $R_{in} > 120 \, k\Omega \text{ or so; } v_o/v_{sig} > 0.92 \, V/V \text{ or so}$
 (Note: These answers are highly sensitive to round-off error. The input resistance is inversely proportional to $1 - g_m r_e = 1 - \alpha$, where $\alpha = \beta/ (\beta + 1)$. Depending on how you solved the problem, your effective value for α might be significantly different from the actual value of 0.99. As long as your overall calculations are correct, you will receive full credit for consistent answers for R_{in} and the gain.)
 c. $R_{in} = 18 \, k\Omega; \ v_o/v_{sig} = 0.64 \, V/V$

1. between terminal A and ground, $R_{eq} = 170 \, \Omega$