Remember to explain all answers in your solutions. You will not receive credit for merely repeating an answer given here. When an answer is not given below, it is either because the solution is trivial or because disclosure of the answer would give away too much of the solution to the problem.

9.32 \(f_H = 870 \text{ kHz}; \frac{v_o}{v_{sig}} = -6.1 \text{ V/V} \)

To double \(f_H \), either change \(R_L \) to 1200 k\(\Omega \) (new gain is \(-1.5 \text{ V/V}\)) or change \(R_G \) (explain why that particular resistor) to 33 k\(\Omega \) (new gain is \(-3.0 \text{ V/V}\))

However, one of these options is not really practical because the other pole is lower than twice the original \(f_H \).

9.34 [proof]; at lower frequencies, \(f_H = 13 \text{ MHz} \) and \(A_M = -25 \text{ V/V} \)

1. a. \(v_{C1} = 0.302 \text{ V}; v_{C2} = 1.554 \text{ V}; \frac{v_o}{v_{id}} = 125 \text{ V/V} \)
 b. \(v_{C1} = 0.248 \text{ V}; v_{C2} = 1.547 \text{ V}; \frac{v_o}{v_{id}} = 130 \text{ V/V} \)

2. \(\frac{v_o}{v_{in}} = -130 \text{ V/V}; C_l = 1.1 \mu\text{F}; C_o = 0.14 \mu\text{F}; C_E = 21 \mu\text{F} \)

3. \(A_M = -26 \text{ V/V}; f_L = 59 \text{ MHz}; A_M \) is reduced by 1/5 and \(f_L \) is reduced by 1/3.33

4. with \(R_D \) added, \(A_M \) is reduced by a factor of 1/5

5. \(f_L = 173 \text{ Hz}; f_H = 2.44 \text{ MHz} \)