## ECEG 201 Laboratory 2, Part B: Characterizing IDD

## Introduction

In this laboratory exercise you will characterize the power supply current,  $I_{DD}$ , as a function of power supply voltage,  $V_{DD}$ , for the temperature sensor you used in Part A of this lab exercise.

Your task for this activity is to measure the power supply current of your sensor for supply voltages of 3.1 V, 3.3 V, and 3.5 V.

## Deliverables

You must turn in this worksheet by **noon today** (Friday, 2020-01-31). Each student will work individually on this activity. You may discuss the activity with other students but you must do your own work and submit your own data.

## Procedure

- 1. Note that you can not directly measure resistance or current using the Analog Discovery 2 (AD2). For this activity, you may use another instrument to measure **resistance** values (but not current). All voltage measurements **must** be made with the AD2. The AD2 must be the only source of power for your test circuit.
- 2. Characterize AD2 voltmeter input resistance
  - (a) Construct the circuit shown below to use for your measurements.



Your AD2 will provide the power for your circuit with its builtin supplies.

Select a  $1.0 \text{ M}\Omega$  resistor from the parts bin. Measure the actual value of your resistor and **record** the measured value here.

You will use both of the AD2's voltmeter channels. Begin by connecting Channel 1 in **series** with the resistor, in order to measure  $V_{DD}$ . Connect Channel 2 to measure the supply voltage,  $V_S$ . Be sure to connect the negative wire from both channels to ground.

- (b) Configure the AD2's V+ supply for an output voltage of 5 V, and turn the Master Enable on.
- (c) **Record** the measured values of  $V_S$  and  $V_{DD}$ . Note that the input resistance of the voltmeter and the 1 M $\Omega$  resistor form a **voltage divider**. The only unknown value at this point is the input resistance of Channel 1 of the voltmeter. Rearrange the voltage divider equation and solve for this resistance. Show your work.
- (d) Swap the connections of Channel 1 and Channel 2, so that Channel 2 is now in series with the resistor. **Record** the measured values of  $V_S$  and  $V_{DD}$ . Calculate the input resistance of Channel 2. Show your work.

- 3. Characterize the temperature sensor  $I_{DD}$ 
  - (a) Construct the circuit shown below to use for your measurements.



**Be careful** to connect your sensor to  $V_{DD}$  and ground correctly. Reversing these connections will probably destroy the sensor.

Your AD2 will provide the power for your circuit with its builtin supplies. This voltage is shown as  $V_S$  in the schematic.

For R1 you can use the resistor from Part A of this procedure, or you can select a  $100 \text{ k}\Omega$  resistor from the parts bin.

- (b) Measure the actual value of R1 and **record** that value here. If you connect multiple resistors in series to form R1, then connect them in series first and then measure the total resistance. **Do not** measure the individual resistors and add the values...each addition increases the uncertainty of the final result.
- (c) Configure the AD2's V+ supply for an output voltage of 5 V. Connect one voltmeter channel to measure  $V_{DD}$  and the other to measure  $V_S$ .
- (d) Carefully decrease the supply voltage until  $V_{DD}$  is between 3.500 V and 3.550 V. Note that you can type desired voltage values directly into the power supply, you don't have to use the pull-down menu.
- (e) **Record** the measured values of  $V_S$  and  $V_{DD}$ . Using Ohm's Law, calculate the current through the resistor. Using Ohm's Law, calculate the current flowing into the voltmeter that is connected to  $V_{DD}$ . Using KCL, calculate  $I_{DD}$ , the current flowing into the sensor. Show all of your work.

(f) Carefully decrease the supply voltage until  $V_{DD}$  is between 3.275 V and 3.325 V. **Record**  $V_S$  and  $V_{DD}$ , then calculate  $I_{DD}$  using the same process that you used in the previous step.

(g) Carefully decrease the supply voltage until  $V_{DD}$  is between 3.050 V and 3.100 V. **Record**  $V_S$  and  $V_{DD}$ , then calculate  $I_{DD}$  using the same process that you used in the previous step.