
Name: Major: � ELEC � CSEN

ECEG 201 Laboratory 5, Calculating Better Averages

Introduction

In this laboratory activity you will dig deeper into the notion of averaging noisy data. You will try to determine how
many samples you should average from the Feather’s ADC in order to reduce the noise to an acceptable level. You
should read through this entire handout, and make sure you understand what you are trying to accomplish, before
starting to gather data.

Deliverables

You must turn in this worksheet by the beginning of class on Wednesday, 2020-03-04. Each student will work
individually on this activity. You may discuss the activity with other students but you must do your own work and
everything you submit for grading must be entirely your own work.

You must send the instructor a copy of the Python code that you used on the Feather for this lab. Remember that
the Feather shows up on the desktop like a flash drive, and you can just copy your code.py or main.py directly
from it. Attach the Python source file to an email message; do not import it to a word processor file or modify it
in any way. The file you send must be suitable for execution on a Feather with no changes. You should follow the
formatting and style guidelines give in PEP 8 Style Guide for Python Code. At the very least, you should use the
Check button in Mu and fix anything that it complains about. The deadline for submitting your code is the same as
that for this worksheet.

Procedure

We have made the assumption that the noise appearing in the Feather’s Analog-to-Digital converter output is random,
and that we can reduce the amount of noise in our readings by averaging some number of ADC digital values. The
question we want to answer today is: how many samples should I average in order to reduce the noise to an acceptable
level? We are going to try to answer this question by computing the average several times, and then looking at the
statistics of the averages themselves.

First, you need to write code for the Feather that reads the raw integer value from the ADC and then averages
some fixed number of these readings. The value of the “fixed number” should be assigned to a constant named
SAMPLES_TO_AVERAGE at the top of your Python module, then you would use this constant in some kind of loop

structure to make readings and compute the average.
After you read each integer sample from the ADC, print that value out to the console in the Mu editor. This will

also cause a small delay between samples, since the ADC can’t produce new samples as fast as your code could read
them.

Second, you will compute some number of these sample averages and then compute the average, minimum,
and maximum value of those averages. The value of “some number” should be assigned to a constant named
AVERAGES_TO_AVERAGE at the top of your module. Once your program has calculated that many averages it

should print out the average of the averages, the minimum of the averages, and the maximum of the averages. Print
all of the these values on a single line, and add some text to indicate which value is which. All of these calculations
should be done on the Feather.

By looking at the values for the average of averages, the minimum of averages, and the maximum of averages
you can get a sense of how precise or repeatable your average-of-ADC-readings is. If there is a large difference
between the minimum and maximum values then it indicates that your average calculations are not very good, and
you probably need to increase the value of SAMPLES_TO_AVG .

So how good is good enough? How small should the difference be between the minimum average and the average
average, and between the maximum average and the average average? Remember that for any ADC we must accept
that the quantization error is ±1

2 LSB. We also know that the Feather’s ADC actually produces a 12-bit result, but
the value method returns this 12-bit result left-justified in a 16-bit unsigned integer value. . . the right-most four

K. Joseph Hass Page 1 of 2 Revised 2020-02-28

https://www.python.org/dev/peps/pep-0008/


bits are always zero. So, if the LSB of the actual 12-bit ADC result was to change from a 0 to a 1 (or vice versa),
how much would the number returned by value change? If you average enough ADC readings can you achieve
a precision such that the averages you calculate do not vary more than ±1

2 of the change that would be caused by
changing the value of the ADC’s LSB?

Use the Analog Discovery to provide an input voltage of (1.00±0.01)V to one of the Feather’s analog inputs.
Measure the voltage using the Analog Discovery and record its value here. Calculate and record the value you
would expect to get from the value method if the Feather’s ADC was ideal.

As a starting point for your experiment, try setting

SAMPLES_TO_AVERAGE = 4

AVERAGES_TO_AVERAGE = 16

Calculate 16 averages, where each average is the average of 4 ADC readings. For these 16 averages, calculate the
average of the averages, the minimum of the averages, and the maximum of the averages. If the difference between
the average of the averages and the minimum of the averages, or between the average of the averages and the max-
imum of the averages, is greater than the quantization error then double the value of SAMPLES_TO_AVERAGE (but
do not change AVERAGES_TO_AVERAGE ). Continue until the precision of the averages is less than the quantization
error. Record your observations in the table below. You may not need all of the rows.

SAMPLES TO AVERAGE Average of Averages Minimum of Averages Maximum of Averages

4

K. Joseph Hass Page 2 of 2 Revised 2020-02-28


