
Introduction to Electrical and Computer Engineering Design ECEG 201
Session 14 Lecture Notes

Announcements

1. Contact me ASAP if you have trouble reading my email attachments or accessing the course web page

Homework 8 is being sent to you as a fillable pdf form. You should be able to just fill in your answers and send it back to
me. . . no printing or scanning required.

2. The Moodle gradebook has been updated with all graded work that I received before spring break. Let me know if you find
any missing scores or if you have questions.

3. Reading:

(a) Revised syllabus for remote instruction

• Course content will be delivered asynchronously, either by email or through the course web page.

• Collaboration is not allowed on any homework, laboratory exercise, project work, quizzes, or exams for the rest
of the semester.

• Your work will generally be submitted via email. Written work must be submitted as a pdf file (not a jpg or a word
processor file). Code will be submitted as an email attachment. . . do not copy your code into another document
or file type.

• You must check in at least twice each week. The preferred method will be by email.

• Check your Bucknell email every day for changes to course policies.

4. Homework 8 is due by noon on 2020-03-25

My Solutions For Homework 7

Many of you did much more work than was necessary to write the build_message() function. Remember that the data in the
processor is always a binary value; there is never any need to convert a value to a string of 0 and 1 characters in order to work
with its binary value. If you calculated the length of the second byte string and then converted that length integer into some
kind of string then you need to think about how numbers exist inside the processor. There is no need to convert a value into a
string or to print the value in order to make it exist.

The tricky part was separating the integer length value into two separate integers representing the top and bottom bytes of the
length value. This is essentially identical to taking a 2-digit decimal number and separating it into its ten’s digit and its one’s
digit. We can do that with two simple calculations in normal arithmetic:

TensDigit = bOriginalV alue/10c OnesDigit = OriginalV alue mod 10

Since we want to separate the original value into two bytes instead of two decimal digits, we need to divide the original value
by 256 instead of 10. We want an integer result so we use Python’s // operator. Remember that this operator discards the
fractional part of the quotient, which is equivalent to the floor operation.

The modulo operation does the opposite of the integer divide: it performs the division but keeps only the integer remainder. In
Python the percent sign is used for the modulo operation so we could calculate the value of the bottom byte with something
like low_byte = length % 256 .

However, division is expensive on a little microcontroller, and I’ve done this enough to know that performing the modulo opera-
tion with a value that is an integer power of 2 is equivalent to amasking operation. If you want to perform a mod 2N operation
you can do this easily by keeping just the bottom N bits. In Python we can do this masking operation by ANDing the original
value with a constant that has its bottom N bits equal to 1 and all other bits equal to 0. So, X mod 256 becomes X & 0xFF .

In fact, we can avoid division altogether if we want. Performing an integer division by an integer power of 2 is equivalent to a
right-shift operation. To divide by 2N you just need to shift right by N bits. So, we could say high_byte = length >> 8 in
Python. Note that the shift operators always shift by the specified number of bit positions. . . the processor doesn’t know or care
anything about decimal or hexadecimal.

K. Joseph Hass Page 1 of 3 Revised 2020-03-19

Now that we have split the length value into two bytes, we need to convert those two Python integer values into two Python
byte values. Note that we are not actually changing the value of anything, we are changing the type. Python uses the type of
a variable to indicate what can be done with that variable. Since we want to construct and return a textbfbyte string we must
convert the two 8-bit integers into something that Python recognizes as a byte character. The method I told you about in class
was to use the chr() function to convert each integer to a single-character string, then use the chr().encode('latin-1')

method to convert the Unicode characters to 8-bit characters.

There were many reasonable ways to write the function, but my version of build_message() looks like this:

def build_message(string1, string2):
"""Concatenate strings, insert length of string2 in middle."""
high_length_byte = len(string2) // 256
low_length_byte = len(string2) & 0xFF
return (string1 + chr(high_length_byte).encode('latin-1')

+ chr(low_length_byte).encode('latin-1') + string2)

Note that I provided a docstring for my function. . . that’s the comment that is the first statement in the function. You should
always provide a docstring with your functions. See Pythons PEP 257 for docstring conventions.

I also used the lowercase_with_underscores naming style for my variables and functions, as you should. I chose descriptive
names for the variables, which is much better than using cryptic names and adding comments.

I wrapped the last line of the function so it would not be more than 79 characters long. In Python, you can always wrap in the
middle of a parenthetical expression. The return doesn’t actually need its expression to be in parentheses, but adding them
made it easier to wrap. Note also that when I wrapped the line I wrapped before the binary string concatenation operator. That’s
the style recommended in PEP 8.

For the count_substrings() function you needed to find a method that you could use on byte strings to look for matches.
There was no need to convert the byte strings to conventional Unicode text strings; the byte string data type has the needed
method. I used the find() method, which returns the index of the first match if the substring matches in the bigger string, or
returns a -1 if there was no match. So, I kept looking for a match until I got the -1. After each match was found I started the next
search just one character beyond where the previous match was found.

def count_substrings(string1, string2):
"""Count occurrences of string1 in string2, with overlap."""
first_char = 0
occurrences = 0
while string2.find(string1, first_char) >= 0:

occurrences = occurrences + 1
Start looking just beyond the match we just found
first_char = string2.find(string1, first_char) + 1

return occurrences

Homework 7 Grading

There were 70 points possible on Homework 7.

• 10 points each for the 6 tests

There were 6 example invocations of the functions provided in the homework handout. If your code executed all of these
examples and produced the same output thatmy code did then you received 60 points. If your function produced something,
but not the correct response, then you received partial credit for that example.

• 5 points miscellaneous problems

You could lose up to 5 points for miscellaneous issues, such as not submitting your code as requested.

• 5 points from pylint score

I ran everyone’s code through pylint, as you should do, and awarded points based on your pylint score. A score of 8.00 or
higher earned all 5 points, 6.00 or higher earned 4 points, 4.00 or higher earned 3 points, 2.00 or higher earned 2 points,

K. Joseph Hass Page 2 of 3 Revised 2020-03-19

and 0.00 or higher earned 1 point. You didn’t get any points if your pylint score was negative or you didn’t submit your
code properly.

Homework/Lab Feedback

Although I did not grade the Lab 4 reports heavily on the basis of style, there were some common problems that I wanted to
address.

• Capitalize proper nouns. (Feather, CircuitPython, Adafruit)

This is very important. If you are making a pitch to Adafruit you had bloody well better capitalize the name of the company
properly. Many of these words are registered trademarks and should be capitalized. Sometimes capitalization helps convey
meaning. . . if you tell me you spent the day trying to program a feather I will wonder if you have been following chickens
around the yard; tell me you are programming a Feather and I know what you mean.

• Don’t capitalize for emphasis or at random.

This is just annoying and makes your writing hard to read. Don’t capitalize words just to give them emphasis, so don’t write
“The Maximum Average was. . . ”, just say “The maximum average. . . ”.

• Use proper format for variable names and mathematical operators.

Remember that names of quantitiesmust always be written in italic: VDD ,DAVG, TC . This is true whether you are writing
an equation or just using the names in a sentence. Use the correct symbols for mathematical operators, particularly the
multiplication (×) operator. If a quantity name needs a subscript then make it a proper subscript and be consistent with
the format of the name.

If you are talking about the maximum voltage or the average current, call them Vmax and IAVG, notMAXV and AV GI .
The first character should indicate the general kind of quantity you are talking about, then use a subscript to refer to a
specific quantity of that kind.

However, the symbols for the SI units and prefixes are never written in italic; they must always be in an upright font.
VBAT = 9mV

• “Digital voltage” and “analog integer” are oxymora.

Voltage is analog and integers are digital. Always. You can say “the integer value provided by the ADC for a particular
voltage” but remember that everything you manipulate with code is digital.

For Lab 4 you were asked to observe the digital integer value coming directly from the ADC. If you converted this value
to a voltage you introduced numerical error, and if you then converted that floating-point value back to an integer you
accumulated even more error. It is important for you to understand that you can evaluate raw numerical values without
relating them to a physical quantity in the real world. The ADC output doesn’t become more “real” if you calculate the
ideal corresponding voltage.

• Do not conflate VREF and VIN for ADCs.

The reference voltage, VREF , for an ADC or DAC is essentially fixed and determines the range of voltages that can be
converted. For an ADC, VIN is the input voltage, which may change frequently. For proper operation, VIN < VREF .

K. Joseph Hass Page 3 of 3 Revised 2020-03-19

